• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, January 12, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

IU scientists study link between energy levels, spinal cord injury

Bioengineer by Bioengineer
March 3, 2020
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: IU School of Medicine


INDIANAPOLIS–Each year, thousands of people in the United States experience a spinal cord injury, damaging the system of nerves that the brain and body use to communicate.

A team of researchers from Indiana University School of Medicine, in collaboration with the National Institute of Neurological Disorders and Stroke, have investigated how boosting energy levels within damaged nerve fibers or axons may represent a novel therapeutic direction for axonal regeneration and functional recovery.

The study, published March 3 in “Cell Metabolism,” examined three central nervous system injury mouse models to determine how energy levels affect spinal cord injury repair.

Investigators from the Spinal Cord and Brain Injury Research Group at Stark Neurosciences Research Institute–led by Xiao-Ming Xu, PhD–and a team led by Zu-Hang Sheng, PhD at Porter Neuroscience Research Center at the National Institute of Neurological Disorders and Stroke, part of the National Institutes of Health, collaborated on the research.

“Spinal cord injury is devastating, affecting patients, their families and our society,” Xu said. “Although tremendous progress has been made in our scientific community, no effective treatments are available for patients with such disorders. There is definitely an urgent need for the development of new strategies for patients with spinal cord injury.”

Xu, whose lab at IU School of Medicine is supported both through the NIH and the U.S. Department of Veterans Affairs, said researching the connection between cell energy and potential regeneration is a new direction for spinal cord injuries.

When a person suffers from a spinal cord injury, the axon, or nerve fibers, regenerate poorly, often leading to neurological impairment and eventual motor paralysis. In this study, Xu`s group found that the injured axons fail to regenerate due to energy deficits and disfunction in mitochondria–the power supply of the cell.

“The extremely polarized neurons face exceptional energy stress after traumatic insults,” said researcher Qi Han, PhD, the first author of the publication. “Like eating spinach to give Popeye strength, we found that stimulating internal cellular power plants by enhancing mitochondrial transport or energy metabolism is key to power central nervous system axons regeneration and functional recovery after spinal cord injury.”

Through three mouse model experiments, they found deleting a protein anchor in the mitochondria–syntaphilin–promoted axonal regeneration and improved recovery of motor functions. They also determined that increasing energy metabolism via creatine treatment promotes axonal regeneration and recovery of function following a spinal cord injury.

Xu said he hopes the strategy could be translated into future treatments of the injury.

###

Media Contact
Katie Duffey
[email protected]
317-278-3630

Original Source

https://medicine.iu.edu/news/2020/03/boosting-recovery-scientists-study-link-between-energy-levels-spinal-cord-injury/

Related Journal Article

http://dx.doi.org/10.1016/j.cmet.2020.02.002

Tags: Cell BiologyCollaborationCritical Care/Emergency MedicineMedicine/HealthneurobiologyResearchers/Scientists/AwardsStroke
Share12Tweet8Share2ShareShareShare2

Related Posts

Senior Nursing Students Encounter End-of-Life Experiences

January 11, 2026

Kawasaki Disease Linked to Hepatitis and Torque Teno Virus

January 11, 2026

Developing Efficient Protocols for Respiratory Virus Biobank

January 11, 2026

Young Male Refugees’ Mental and Sexual Health Insights

January 11, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    146 shares
    Share 58 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    68 shares
    Share 27 Tweet 17
  • Impact of Vegan Diet and Resistance Exercise on Muscle Volume

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Diving Deep: Sindiplozoon Coreius Mitochondrial Genome Unveiled

Deep Learning Revolutionizes Personalized Entrepreneurship Education

Senior Nursing Students Encounter End-of-Life Experiences

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.