• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, July 6, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Iron catalyst could make important chemical reactions cheaper and more eco-friendly

Bioengineer by Bioengineer
June 2, 2022
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A catalyst is a key ingredient for many chemical reactions. It facilitates a molecule to change into another molecule, without being changed itself, meaning it can be used multiple times. However, many catalysts are made of precious metals, making them expensive and potentially harmful to the environment. Now, researchers have designed a catalyst made of a much more abundant metal—iron—to facilitate an important chemical reaction—the olefin metathesis reaction. Their work was published recently in Nature Catalysis.

Olefin metathesis reaction

Credit: OIST

A catalyst is a key ingredient for many chemical reactions. It facilitates a molecule to change into another molecule, without being changed itself, meaning it can be used multiple times. However, many catalysts are made of precious metals, making them expensive and potentially harmful to the environment. Now, researchers have designed a catalyst made of a much more abundant metal—iron—to facilitate an important chemical reaction—the olefin metathesis reaction. Their work was published recently in Nature Catalysis.

“The olefin metathesis reaction is among the most widely applicable catalytic reactions for carbon-carbon double bond formation,” explained  Satoshi Takebayashi, a researcher at the Okinawa Institute of Science and Technology Graduate University (OIST) who was involved in the work. “Carbon-carbon double bonds are an important bond found in many chemical products.”

Olefins are a class of compounds with carbon-carbon double bonds. The olefin metathesis reaction produces new carbon-carbon double bonds by swapping the carbon atoms in olefins. The catalyst facilitates this swapping by breaking the original double bonds and causing new ones to form.

Currently, one of the most popular catalysts for this reaction is made from the precious metal, ruthenium. The aim of this study was to facilitate the reaction using a catalyst made with a much more abundant metal, iron, thus making the whole process cheaper and more environmentally friendly. This has been a long-sought goal in the scientific community as ruthenium and iron are in the same group on the periodic table and so are expected to have similar properties.

For this study, the researchers designed a new iron complex and demonstrated that it could be used as a catalyst in the olefin metathesis reaction. They showed that it worked by creating a polymer—a long chain molecule made of smaller chemical units.

Despite the success of this research, Takebayashi highlighted that the state-of-the-art ruthenium-based catalysts are still much more applicable than the newly created iron-based ones. The iron-catalyst is unstable and less active when exposed to air and moisture. These limitations need to be fixed before the iron-catalyst can replace the ruthenium one.

“This study can be useful to other researchers in the field,” concluded Takebayashi. “I hope that iron-based catalysts can be developed further using this knowledge.”



Journal

Nature Catalysis

DOI

10.1038/s41929-022-00793-4

Method of Research

Experimental study

Article Title

Iron-catalyzed ring opening metathesis polymerization of olefins and mechanistic studies

Article Publication Date

2-Jun-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Fluorescent proteins

New imaging technique allows researchers to see gene expression in brains of live mice in real time

July 6, 2022
Gecko Spatula

Gecko feet are coated in an ultra-thin layer of lipids that help them stay sticky

July 6, 2022

Leon & Friends, SynGAP Research Fund USA & SRF Europe partner to grant €180,000 to Professor Courtney of Turku Bioscience Centre, Finland

July 6, 2022

Deep Longevity granted the first microbiomic aging clock patent

July 6, 2022

POPULAR NEWS

  • blank

    Telescopic contact lenses

    40 shares
    Share 16 Tweet 10
  • Oregon State University research finds evidence to suggest Pacific whiting skin has anti-aging properties that prevent wrinkles

    38 shares
    Share 15 Tweet 10
  • Emerging Omicron subvariants BA.2.12.1, BA.4 and BA.5 are inhibited less efficiently by antibodies

    37 shares
    Share 15 Tweet 9
  • The pair of Orcas deterring Great White Sharks – by ripping open their torsos for livers

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Violence/CriminalsVaccineWeaponryZoology/Veterinary ScienceWeather/StormsUrogenital SystemUrbanizationVaccinesVirologyVehiclesVirusUniversity of Washington

Recent Posts

  • New imaging technique allows researchers to see gene expression in brains of live mice in real time
  • Gecko feet are coated in an ultra-thin layer of lipids that help them stay sticky
  • Leon & Friends, SynGAP Research Fund USA & SRF Europe partner to grant €180,000 to Professor Courtney of Turku Bioscience Centre, Finland
  • Deep Longevity granted the first microbiomic aging clock patent
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....