• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, December 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Invisible fungi revealed by their genetic material

Bioengineer by Bioengineer
November 3, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Veera Tuovinen

How can new life forms that we cannot see be discovered? Using a novel method based on looking for DNA in soil samples, researchers at Uppsala University have revealed the existence of two hitherto unknown, but very common fungus species. They are thought to perform a key function in the ecosystem, but their exact role remains to be clarified. The study is published in the journal IMA Fungus.

To most people, the word “fungus” conjures up something like a chanterelle or fly agaric, rising vertically from the ground. Since a huge number of fungi do not form distinct fruit bodies, however, they do not catch the eye. This applies, for example, to the newly discovered fungi. Invisible to the naked eye, they are nonetheless common in forest soils in Northern and Central Europe, as DNA analyses of soil samples show.

The researchers found the fungi in soil samples from the Ivantjärnheden field station near Jädraås, in the province of Gästrikland, in east central Sweden. The method developed by the scientists is based on extracting both long DNA sequences, to investigate species interrelationships, and short DNA sequences to get an idea of how common species are.

“Our data show that these two are closely related but distinct species that compete for resources in the soil profile. One wins out, and is dominant, in organic soil; we’ve named it Archaeorhizomyces victor. In second place we have Archaeorhizomyces secundus, which makes do with resources in mineral soil to a greater extent,” says Anna Rosling of the Department of Ecology and Genetics at Uppsala University, who headed the work.

Where the two species coexist – in soil and roots in mixed and coniferous forest – Archaeorhizomyces victor thus predominates in the humus-rich soil. Just a little further down in the ground, where the soil contains less nutrients, victor does poorly and secundus can become widespread.

These species belong to the class Archaeorhizomycetes and, as such, to a group of ancient fungal root endophytes: fungi that colonise plants’ root tissue internally and live in symbiosis with the host, enhancing plant performance and causing no obvious harm. From soil samples around the world, the researchers know that this class comprises at least 1,000 species. These fungi are common; in soil samples from Ivantjärnheden, for example, they make up roughly 30 per cent of all sequenced genetic material. This large fungus group was first described scientifically in 2011 and then, too, it was Anna Rosling and her research group who made the discovery, and also succeeded in cultivating two species in their laboratory. The fungi then grew enough to permit more detailed study. Rosling describes them as slow-growing and somewhat beige in colour, and says they form differently shaped spores.

With these two newly discovered fungi, the known species of Archaeorhizomycetes have doubled in number. Even more important, the researchers think, is the fact that they have established a method of identifying new species that does not depend on cultivation, or on finding a fruiting body. And much remains to be discovered in the fungus kingdom. The presence of certain marker genes in soil samples indicates that nearly 90 per cent of all fungi have yet to be scientifically described.

“With our study, we want to give an idea of the tremendous diversity of fungi in the soil and the importance of naming them, even if we haven’t seen them with the naked eye yet,” Rosling says.

###

The research group is now working further on developing methods that will enable study of the new fungi in greater detail, directly in soil and root samples. One hope is to be able to cultivate them. The scientists are also collecting evidence that will allow description of the nearly 100 still undiscovered species of Archaeorhizomycetes that are assumed to exist in Sweden. The project is funded by the Swedish Taxonomy Initiative and the Carl Trygger Foundation for Scientific Research.

Faheema Kalsoom Khan et al, Naming the untouchable – environmental sequences and niche partitioning as taxonomical evidence in fungi, IMA Fungus. DOI: 10.1186/s43008-020-00045-9

Media Contact
Anna Rosling
[email protected]

Related Journal Article

http://dx.doi.org/10.1186/s43008-020-00045-9

Tags: BiodiversityBiologyEcology/EnvironmentGenesGeneticsGeology/SoilMycology
Share12Tweet8Share2ShareShareShare2

Related Posts

Male-Biased Immune Changes in Late-Onset Preeclampsia

Male-Biased Immune Changes in Late-Onset Preeclampsia

December 24, 2025
blank

Mitochondrial Recombination Fuels Rapid Fish DNA Evolution

December 24, 2025

Immune Response Differences Influence Parkinson’s Disease Progression

December 24, 2025

Unlocking Xiangyang Black Pig Genetics Through Resequencing

December 24, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    54 shares
    Share 22 Tweet 14
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Agentic AI in SMMEs: A Bibliometric Study

Enhancing Nursing Curriculum with Spirituality and Inclusion

Managing Acute Pain and Delirium in Seniors

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.