• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Investigators study how a protein factor contributes to cancer cell migration

Bioengineer by Bioengineer
November 1, 2018
in Cancer
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

KEY FINDINGS

UCLA researchers have discovered a new protein factor that contributes to a fibroblast cell's ability to migrate to a wound and participate in its healing process. The study's results could help scientists prevent cancer cells from using the same mechanisms to move throughout the body and spread.

BACKGROUND

In response to a wound, fibroblasts (cells found in connective tissues of the body), are activated to migrate toward the wound and spread, which contributes to the healing process. While non-dividing, quiescent fibroblasts are found in normal unwounded skin, when skin is wounded, molecular changes take place that give fibroblasts the ability to migrate toward the wound and heal it. Previous studies with microarrays have shown that proliferation and quiescence are associated with a major reprogramming of gene expression patterns. These gene expression changes are key for quiescent cells to reenter the cell cycle and molecular changes in response to a wound are important for the role of fibroblasts in healing. When genes are expressed, the mRNAs (or messenger molecules) that connect the genetic material in the DNA to proteins need to be processed from their initial to final form. Little was known about whether the processing of RNA molecules is important for cell migration.

METHOD

To understand how fibroblast cells migrate, the UCLA researchers utilized high throughput RNA Sequencing, imaging, primary human cells isolated from skin, cancer cell lines, and mouse modeling. They found that proliferating cells adjacent to wounds express higher levels of cleavage and polyadenylation factors (proteins that mark the end of mRNA molecules) than quiescent fibroblasts in unwounded skin. When fibroblast cells were deprived of one of these cleavage and polyadenylation factors, they migrated at a slower rate.

IMPACT

Cancer cells rely on cleavage and polyadenylation factors to migrate, similar to normal non-tumorous proliferating fibroblast cells that participate in the healing process. By upregulating genes involved in mRNA processing, including cleavage and polyadenylation factors, cancer cells may be more able to migrate, invade and metastasize. This finding about cancer cells may offer scientists new ways to understand how cancer spreads, which could lead to innovative therapies for patients.

"We found that cleavage and polyadenylation factors are functionally important for fibroblast cells to migrate," said Hilary Coller, Associate Professor, Department of Molecular, Cellular and Developmental Biology, Department of Biological Chemistry at UCLA and member of the UCLA Jonsson Comprehensive Cancer Center Gene Regulation Program. "These same factors are elevated in proliferating fibroblasts, and affect migration in cancer cells as well. The data from our study, taken as a whole, provide a deeper understanding of the role of mRNA processing in the close association between proliferation and migration."

###

AUTHORS

The study's first author is Mithun Mitra from the Department of Molecular, Cell and Developmental Biology at UCLA. Other authors include, from UCLA, Vinay S. Swamy, Lois E. Nersesian, Daniel G. Taylor, Aaron M. Ambrus, David Jelinek, Hilary A. Coller and David C. Corney from Princeton University and UCLA. From Princeton University, Elizabeth L. Johnson, David G. Robinson, Sandra L. Batista and Wei Wang.

JOURNAL

This story was published online on Oct. 25, 2018, in Genome Biology.

FUNDING

The research was supported by the Rita Allen Foundation, National Science Foundation, National Institute of General Medical Sciences, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Pharmaceutical Research and Manufacturers of America Foundation, National Science Foundation, National Institute of General Medical Sciences, Eli and Edythe Broad Foundation, Iris Cantor Women's Health Center, National Institutes of Health, Leukemia and Lymphoma Society, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, National Cancer Institute, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Cancer Research Institute, Melanoma Research Alliance, Division of Cancer Epidemiology and Genetics at the National Cancer Institute.

Media Contact

Duane Bates
[email protected]
310-206-4430
@uclahealth

http://www.uclahealth.org/

https://cancer.ucla.edu/Home/Components/News/News/1206/1631

Share12Tweet7Share2ShareShareShare1

Related Posts

Nerolidol and Cyclophosphamide Combat Breast Cancer Cells

Nerolidol and Cyclophosphamide Combat Breast Cancer Cells

August 19, 2025
blank

Moffitt Study Uncovers Promising Combination Therapy for Drug-Resistant Melanoma

August 19, 2025

Updated Guidelines for Managing Aromatase Inhibitor-Induced Bone Loss in Hormone-Sensitive Breast Cancer Patients

August 19, 2025

University of Iowa Researchers Discover Promising New Target for Treating Rare, Aggressive Childhood Cancer

August 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nerolidol and Cyclophosphamide Combat Breast Cancer Cells

Hearing Aid Use Linked to Reduced Risk of Developing Dementia, Study Finds

Blood Biochemistry Reveals Post-Mortem Interval Insights

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.