• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Investigation of oceanic ‘black carbon’ uncovers mystery in global carbon cycle

Bioengineer by Bioengineer
November 7, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New technique unexpectedly finds that black carbon in rivers and oceans differs significantly

IMAGE

Credit: Robert G.M. Spencer

TROY, N.Y. — In understanding the global carbon cycle, “black carbon” — decay-resistant carbon molecules altered by exposure to fire or combustion — has long been presumed to originate on land and work its way to the ocean via rivers and streams. An unexpected finding published today in Nature Communications challenges that long-held assumption and introduces a tantalizing new mystery: If oceanic black carbon is significantly different from the black carbon found in rivers, where did it come from?

“The signature of oceanic dissolved black carbon is very different from that of riverine dissolved black carbon, raising a host of fundamental questions,” said Sasha Wagner, a Rensselaer Polytechnic Institute assistant professor of earth and environmental sciences and lead author of the research. “Are there other sources of dissolved black carbon? Is it being degraded away in rivers, sequestered in sediments, or altered beyond recognition before it reaches the open ocean? Is what we’ve measured actually fire-derived?”

By calling the origin of oceanic black carbon into question, the research published in Nature Communications actually compounds a puzzle that Wagner has been exploring. Radiocarbon dating shows dissolved black carbon in the deep oceans to be as much as 20,000 years old, while calculations estimate that rivers could replace the entire amount of oceanic dissolved black carbon in about 500 years. If so much dissolved black carbon has been moving downriver to the ocean, apparently for millennia, why don’t researchers find more of it?

In exploring such questions, Wagner developed a new technique for analyzing black carbon. Sources of black carbon have traditionally been tracked using a ratio between molecular proxies. But, given that the ratio is easily altered with exposure to sunlight, the method is unreliable when used in aquatic environments. Wagner’s new approach incorporates carbon isotopes — variants of carbon that contain differing numbers of neutrons — to discern different sources of dissolved black carbon. By performing stable carbon isotope analysis on the individual proxy molecules, it becomes possible to track terrestrial sources of black carbon as it moves from soils to the ocean.

In her newly published research, Wagner used the technique to ask a broad question, comparing samples taken from the Atlantic and Pacific Oceans with large rivers including the Amazon, Mississippi, Congo, and two Arctic Rivers.

The results show that oceanic dissolved black carbon contains a significantly higher proportion of carbon-13 (an isotope of carbon-12 that has one additional neutron) than dissolved black carbon found in global rivers.

“The values are really different, and while we’re still in the very early days of using this method, that result tells us that the black carbon in the ocean isn’t coming from rivers,” Wagner said. “Riverine dissolved black carbon isn’t reaching the oceans, and that raises a lot of exciting alternatives we should explore.”

“The use of isotope ratios to discern the separate origins of black carbon from lakes and streams from that found in the sea has disrupted some long-held beliefs in the scientific community.” said Curt Breneman, dean of the Rensselaer School of Science. “Sasha Wagner’s innovative approach to this compelling question is a great example of how faculty members at Rensselaer keep pushing back the frontiers of science forward by asking hard questions and challenging the status quo.”

###

“Isotopic composition of oceanic dissolved black carbon reveals non-riverine source” was supported by the National Science Foundation (Chemical Oceanography #1756812, #1756733, and #1635618; Office of Polar Programs #1500169). Wagner was joined in the research by Jay Brandes and Kun Ma at the University of Georgia (Skidaway Institute of Oceanography), Robert G.M. Spencer at Florida State University, Sarah Z. Rosengard at the University of British Columbia, Jose Mauro S. Moura at the Federal University of Western Para in Brazil, and Aron Stubbins at Northeastern University.

About Rensselaer Polytechnic Institute

Founded in 1824, Rensselaer Polytechnic Institute is America’s first technological research university. Rensselaer encompasses five schools, 32 research centers, more than 145 academic programs, and a dynamic community made up of more than 7,900 students and over 100,000 living alumni. Rensselaer faculty and alumni include more than 145 National Academy members, six members of the National Inventors Hall of Fame, six National Medal of Technology winners, five National Medal of Science winners, and a Nobel Prize winner in Physics. With nearly 200 years of experience advancing scientific and technological knowledge, Rensselaer remains focused on addressing global challenges with a spirit of ingenuity and collaboration. To learn more, please visit http://www.rpi.edu.

Media Contact
Reeve Hamilton
[email protected]

Tags: Climate ChangeClimate ScienceEarth ScienceGeology/SoilHydrology/Water ResourcesOceanography
Share15Tweet10Share3ShareShareShare2

Related Posts

Microbial Molecule Discovered to Restore Liver and Gut Health, Scientists Report

Microbial Molecule Discovered to Restore Liver and Gut Health, Scientists Report

August 12, 2025
Pew Backs 10 Latin American Fellows Driving Scientific Innovation

Pew Backs 10 Latin American Fellows Driving Scientific Innovation

August 12, 2025

Pew Awards Biomedical Science Grants to 22 Researchers

August 12, 2025

Genetically Engineered Mouse Model Sheds Light on Genetic Bone Disorders

August 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    78 shares
    Share 31 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

RSNA AI Challenge Models Demonstrate Independent Mammogram Interpretation Capabilities

Breakthrough Protein Therapy Emerges as First-Ever Antidote for Carbon Monoxide Poisoning

Mount Sinai Secures $4 Million Grant from American Cancer Society to Establish Cancer Health Research Center

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.