• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, January 30, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Invasive fruit fly may pose threat to forest ecosystems

Bioengineer by Bioengineer
November 3, 2022
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The invasive spotted wing drosophila (SWD), introduced from South-East Asia, is a well-known fruit crop pest. It lays its eggs by destroying the mechanical protection of the fruit’s skin, providing an entry point for further infestation. Egg deposition and inoculated microbes then accelerate decay, and as a result the fruit rots and becomes inedible. While this small fly is known to cause massive economic damage in agriculture, little is known about its ecological impact on more natural ecosystems such as forests.

Larva of the invasive spotted wing drosophila

Credit: Prof. Martin M. Gossner

The invasive spotted wing drosophila (SWD), introduced from South-East Asia, is a well-known fruit crop pest. It lays its eggs by destroying the mechanical protection of the fruit’s skin, providing an entry point for further infestation. Egg deposition and inoculated microbes then accelerate decay, and as a result the fruit rots and becomes inedible. While this small fly is known to cause massive economic damage in agriculture, little is known about its ecological impact on more natural ecosystems such as forests.

A recent study by Swiss scientists from the Swiss Federal Institute for Forest, Snow and Landscape Research WSL and the Ökobüro Biotopia, published in the scientific journal NeoBiota, concluded that the SWD competes strongly with other fruit-eating species and that its presence could have far-reaching consequences for ecosystems.

The research team assessed the use of potential host plants at 64 sites in forests from mid-June to mid-October 2020 by checking a total of 12,000 fruits for SWD egg deposits. To determine if SWD attacks trigger fruit decay, they also recorded symptoms of fruit decay after egg deposition. In addition, they monitored the fruit fly (drosophilid) fauna in the area, assuming that the SWD would outnumber and possibly outcompete other fruit-eating insects.

The authors found egg deposits on the fruits of 31 of the 39 fruit-bearing forest plant species they studied, with 18 species showing an attack rate of more than 50%. Furthermore, more than 50% of the affected plant species showed severe symptoms of decay after egg deposition. The egg depositions may alter the attractiveness of fruits, because they change their chemical composition and visual cues, such as colour, shape and reflective patterns, which in turn might lead seed dispersers such as birds to consume less fruits.

Given the large number of infested fruits, significant ecological impacts can be expected. “Rapid decay of fruits attacked by the spotted wing drosophila results in a loss of fruit available for other species competing for this resource, and may disrupt seed-dispersal mutualisms due to reduced consumption of fruit by dispersers such as birds,” says Prof. Martin M. Gossner, entomologist at the WSL. “If the fly reproduces in large numbers, both seed dispersers and plants could suffer.”

The authors further found that SWD were strongly represented and dominant in trap catches, and showed that the more abundant SWD were, the less abundant native drosophilids were. This suggests additional negative impacts of the invasive species on native communities.

With ongoing climate change, these potentially severe ecological impacts might be amplified in temperate forests, as higher average and winter temperatures will most likely lead to shorter generation times and lower winter mortality, which will eventually further increase the pressure on forest fruits and the competitiveness of the SWD over native drosophilids, the authors note.

 

Original source:
Bühlmann I, Gossner MM (2022) Invasive Drosophila suzukii outnumbers native controphics and causes substantial damage to fruits of forest plants. NeoBiota 77: 39-77. https://doi.org/10.3897/neobiota.77.87319



Journal

NeoBiota

DOI

10.3897/neobiota.77.87319

Article Title

Invasive Drosophila suzukii outnumbers native controphics and causes substantial damage to fruits of forest plants

Article Publication Date

18-Oct-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

Genetic mixing between warm-adapted and cool-adapted species can reduce the risk of extinction due to climate change

Mixing between species reduces vulnerability to climate change

January 30, 2023
Turnersuchus hingleyae

New ancient ‘marine crocodile’ discovered on UK’s Jurassic Coast – and it’s one of the oldest specimens of its type ever found

January 30, 2023

Antioxidants from mitochondria protect cells from dying

January 30, 2023

A research led from ITEFI-CSIC achieves inhibition of cancer cell migration in vitro after low intensity ultrasound irradiation, allowing a controlled modification of the tumor cells biodynamics without damage

January 30, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    64 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

KAIST presents a fundamental technology to remove metastatic traits from lung cancer cells​

Mixing between species reduces vulnerability to climate change

NSF’s NCSES releases report on diversity trends in STEM workforce and education

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 43 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In