• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Introducing GMpi: Affordable and adaptable remote monitoring for plant growth experiments

Bioengineer by Bioengineer
November 7, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Please cite the article: Grindstaff, B., M. E. Mabry, P. D. Blischak, M. Quinn, and J. C. Pires. 2019. Affordable remote monitoring of plant growth in facilities using Raspberry Pi…


Growth chambers are a cornerstone of laboratory-based plant science, allowing for the tightly controlled conditions necessary for many experimental designs. However, these conditions can sometimes be a little less than controlled, creating headaches ranging from reproducibility issues to the loss of entire experiments. Remote monitoring of conditions helps, but the equipment can be expensive, or lack features or sensors important for a particular experiment. In research presented in a recent issue of Applications in Plant Sciences, Makenzie Mabry, MS, and colleagues at the University of Missouri and University of Arizona developed a flexible and inexpensive monitoring system for plant growth facilities, called Growth Monitor pi, or GMpi. The system uses open source software and a single-board Raspberry Pi computer, and can be connected to a wide variety of different sensors to meet researchers’ specific needs.

Necessity is often the mother of invention, and that was the case for GMpi. “We wanted to be able to monitor some sensitive experiments but were traveling a lot at the time and couldn’t find anything that completely met our needs with notifications and alerts at an affordable price,” said Mabry, the corresponding author of the manuscript. “We hope that the GMpi is approachable for other plant scientists who wish to monitor their plants more closely, have extra security in alerting users to conditions in plant growth facilities, or just wish to increase reproducibility across studies.”

The GMpi system’s “internet of things” approach maximizes flexibility while keeping costs low, making it an appealing tool to a variety of plant researchers. “We hope that researchers can take the GMpi and expand on it in ways that suit their research,” said Mabry. “For example, we think that those interested in phenotyping their plants can adapt the GMpi relatively easily for that purpose, as well as retaining the use of it for monitoring their plants.”

The low cost of the GMpi system (about US$200), made possible by open source software and inexpensive hardware, is also likely to lure researchers looking for a way to ensure their growth chamber experiments are running smoothly. “Many researchers do not have the funding or resources to afford expensive monitoring systems, but still would like to know the conditions their plants experience day-to-day,” said Mabry. “We also feel there is always room for improving reproducibility across science and hope that by providing an inexpensive and open source platform this will be more accessible to all scientists who wish to use it.”

To make the GMpi system even more accessible, detailed protocols are provided with the article, describing the necessary equipment, Raspberry Pi set up, and software installation.

In addition to ensuring reproducibility, the GMpi system has already brought peace of mind to the Pires lab at the University of Missouri, where Mabry is pursuing her doctorate. “When I am out of town, I am still in the loop about what is going on with the chamber and plants and can delegate tasks to check on the plants when we get an alert that the facility is out of our specified range for temperature, humidity, or light,” said Mabry.

It seems the GMpi system has many uses, not least of which is as a guardian against plant researchers’ nightmares about a growth chamber breaking over a holiday weekend.

###

Brandin Grindstaff, Makenzie E. Mabry, Paul D. Blischak, Micheal Quinn, and J. Chris Pires. 2019. Affordable remote monitoring of plant growth in facilities using Raspberry Pi computers. Applications in Plant Sciences 7(8): e11280. https://doi.org/10.1002/aps3.11280

Applications in Plant Sciences (APPS) is a monthly, peer-reviewed, open access journal focusing on new tools, technologies, and protocols in all areas of the plant sciences. It is published by the Botanical Society of America (http://www.botany.org), a nonprofit membership society with a mission to promote botany, the field of basic science dealing with the study and inquiry into the form, function, development, diversity, reproduction, evolution, and uses of plants and their interactions within the biosphere. APPS is available as part of the Wiley Online Library (https://onlinelibrary.wiley.com/journal/21680450).

For further information, please contact the APPS staff at [email protected].

Media Contact
Beth Parada
[email protected]

Related Journal Article

http://dx.doi.org/10.1002/aps3.11280

Tags: BioinformaticsBiologyComputer ScienceDevelopmental/Reproductive BiologyEcology/EnvironmentPhysiologyPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Drivers of Human-Gaur Conflict in Tamil Nadu

Drivers of Human-Gaur Conflict in Tamil Nadu

September 11, 2025
blank

Korea University Study Uncovers Hidden Complexity Within Recurrent Brain Tumors

September 11, 2025

Phenazines Impact Microbiomes by Targeting Topoisomerase IV

September 11, 2025

Turning Noise into Power: Unveiling the Symmetric Ratchet Motor Breakthrough

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    63 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Discovering a Female-Specific Mechanism Regulating Energy Expenditure in Brown Fat

Dr. Michael Welsh Honored with Lasker Award for Groundbreaking Cystic Fibrosis Research

Mass General Brigham’s Kraft Center Reveals Winner and Finalists for 2025 Kraft Prize in Community Health Innovation

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.