• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, February 8, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Intermetallic palladium-zinc alloy: a corrosion-resistant, highly active, low-cost electrocatalyst!

Bioengineer by Bioengineer
October 18, 2022
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Palladium—a precious metal—is attracting attention as a fuel cell electrocatalyst, which requires metals with high electrocatalytic activity. Because of the high cost of palladium, creating a palladium-zinc alloy should improve catalytic activity while reducing costs. In addition, corrosion resistance is important for potential electrocatalyst materials because catalytic reactions use extremely corrosive alkaline aqueous solutions that degrade metal electrocatalysts and lower their efficiency over time.

Corrosion resistant intermetallic palladium zinc alloy

Credit: Hiroshi Inoue, Osaka Metropolitan University

Palladium—a precious metal—is attracting attention as a fuel cell electrocatalyst, which requires metals with high electrocatalytic activity. Because of the high cost of palladium, creating a palladium-zinc alloy should improve catalytic activity while reducing costs. In addition, corrosion resistance is important for potential electrocatalyst materials because catalytic reactions use extremely corrosive alkaline aqueous solutions that degrade metal electrocatalysts and lower their efficiency over time.

A research group led by Professor Hiroshi Inoue, Associate Professor Eiji Higuchi, and Associate Professor Masanobu Chiku of the Graduate School of Engineering, Osaka Metropolitan University, has found a promising intermetallic alloy of palladium and zinc (i-PdZn). The intermetallic alloy has a precisely arranged atomic structure consisting of equal amounts of alternating palladium and zinc atoms. This makes the i-PdZn highly resistant to corrosion in alkaline aqueous solutions.

Metal alloys can be substitutional or intermetallic. In a substitutional palladium-zinc alloy, zinc atoms replace half of the palladium atoms at random, whereas palladium and zinc atoms in the new intermetallic alloy i-PdZn are arranged in an alternating fashion so that each zinc atom is surrounded by palladium atoms and vice versa.

When both the i-PdZn and the substitutional palladium-zinc alloy were immersed in an aqueous alkaline solution, the researchers found that most of the zinc atoms leached out of the substitutional alloy within a few minutes. However, the regular arrangement of palladium and zinc atoms in the i-PdZn effectively prevented the zinc atoms in the middle of the alloy from leaching out. This created a protective skeletal palladium shell around the outside of the alloy, giving the i-PdZn a much higher corrosion resistance.

Furthermore, when used as an electrocatalyst to generate, the i-PdZn exhibited a peak ethanol oxidation activity approximately 5.1 times as high as that of pure palladium. This was due to both the electronic properties of the alloy’s core, and the larger surface area created by the skeletal palladium shell in the aqueous alkaline solution.

“The unique properties of intermetallic alloys that make them good catalysts were previously known, but now we have shown that the dissolution of zinc is greatly suppressed in our intermetallic palladium-zinc alloy, which makes it much more corrosion-resistant than the substitutional alloy,” Professor Inoue concluded. “We believe that these results may provide clues for the development of non-precious metal electrocatalysts, for which corrosion resistance is an issue.”

The research results were published online on July 23, 2022, in Research on Chemical Intermediates, a journal published by Springer Nature.

###

About OMU

Osaka Metropolitan University is a new public university established in April 2022, formed by merger between Osaka City University and Osaka Prefecture University. For more research news visit https://www.upc-osaka.ac.jp/new-univ/en-research/research/ or follow us on Twitter: @OsakaMetUniv_en, or on Facebook.



Journal

Research on Chemical Intermediates

DOI

10.1007/s11164-022-04780-z

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Activity and durability of intermetallic PdZn electrocatalyst for ethanol oxidation reaction

Article Publication Date

23-Jul-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

A schematic of the beam diameter measurement using transmitted X-rays old and new methods

Size of X-Ray beams successfully evaluated with mathematics

February 8, 2023
Flight Bones

Scientists develop new index based on functional morphology to understand how ancestors of modern birds used their wings

February 8, 2023

Immunaeon joins the RegenMed Hub

February 8, 2023

Novel method to design new peptide therapeutics pioneered

February 8, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    66 shares
    Share 26 Tweet 17
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9
  • Duke-NUS and NHCS scientists first in the world to regenerate diseased kidney

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Size of X-Ray beams successfully evaluated with mathematics

Scientists develop new index based on functional morphology to understand how ancestors of modern birds used their wings

Immunaeon joins the RegenMed Hub

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 43 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In