• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Interactions within larger social groups can cause tipping points in contagion flow

Bioengineer by Bioengineer
October 20, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The distribution of group interactions in a social network affects the critical point at which explosive jumps in opinion, popularity, or disease spread occur.

IMAGE

Credit: Nicholas Landry

WASHINGTON, October 20, 2020 — Contagion processes, such as opinion formation or disease spread, can reach a tipping point, where the contagion either rapidly spreads or dies out. When modeling these processes, it is difficult to capture this complex transition, making the conditions that affect the tipping point a challenge to uncover.

In the journal Chaos, from AIP Publishing, Nicholas Landry and Juan G. Restrepo, from the University of Colorado Boulder, studied the parameters of these transitions by including three-person group interactions in a contagion model called the susceptible-infected-susceptible model.

In this model, an infected person who recovers from an infection can be reinfected. It is often used to understand the propagation of things like the flu but does not typically consider interactions between more than two people.

“With a traditional network SIS model, when you increase the infectivity of an idea or a disease, you don’t see the explosive transitions that you often see in the real world,” Landry said. “Including group interactions in addition to individual interactions has a profound effect on the system or population dynamics” and can lead to tipping point behavior.

Once the rate of infection or information transfer between individuals passes a critical point, the fraction of infected people explosively jumps to an epidemic for high enough group infectivity. More surprisingly, if the rate of infection decreases after this jump, the infected fraction does not immediately decrease. It remains an epidemic past that same critical point before moving back down to a healthy equilibrium.

This results in a loop region in which there may or may not be high levels of infection, depending on how many people are infected initially. How these group interactions are distributed affects the critical point at which an explosive transition occurs.

The authors also studied how variability in the group connections — for example, whether people with more friends also participate in more group interactions — changes the likelihood of tipping point behavior. They explain the emergence of this explosive behavior as the interplay between individual interactions and group interactions. Depending on which mechanism dominates, the system may exhibit an explosive transition.

Additional parameters can be added to the model to tune it for different processes and better understand how much of an individual’s social network must be infected for a virus or information to spread.

The work is currently theoretical, but the researchers have plans to apply the model to actual data from physical networks and consider other structural characteristics that real-world networks exhibit.

###

The article, “The effect of heterogeneity on hypergraph contagion models,” is authored by Nicholas W. Landry and Juan G. Restrepo. The article will appear in Chaos on Oct. 20, 2020 (DOI: 10.1063/5.0020034). After that date, it can be accessed at https://doi.org/10.1063/5.0020034.

ABOUT THE JOURNAL

Chaos is devoted to increasing the understanding of nonlinear phenomena in all areas of science and engineering and describing their manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines. See https://aip.scitation.org/journal/cha.

Media Contact
Larry Frum
[email protected]

Related Journal Article

http://dx.doi.org/10.1063/5.0020034

Tags: Algorithms/ModelsChemistry/Physics/Materials SciencesEpidemiologyMathematics/StatisticsMedicine/HealthSystems/Chaos/Pattern Formation/Complexity
Share12Tweet8Share2ShareShareShare2

Related Posts

Scientists Convert Plastic Waste into High-Performance CO2 Capture Materials

Scientists Convert Plastic Waste into High-Performance CO2 Capture Materials

September 5, 2025
Decoding Orderly and Disorderly Behavior in 2D Nanomaterials: Paving the Way for AI-Driven Custom Designs

Decoding Orderly and Disorderly Behavior in 2D Nanomaterials: Paving the Way for AI-Driven Custom Designs

September 5, 2025

Physicists Develop Visible Time Crystal for the First Time

September 5, 2025

Adaptive Visible-Infrared Camouflage Enables Wide-Spectrum Radiation Control for Extreme Temperature Environments

September 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Impact of Environment on Kenyan Donkey Welfare

Protecting Youth from the Risks of Sports Betting Advertising in Canada

U-Shaped BMI Link to Liver Stiffness Risk

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.