• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Insights into melanoma initiation offer new therapeutic opportunities

Bioengineer by Bioengineer
October 31, 2018
in Cancer
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from VIB and KU Leuven uncovered a key vulnerability of melanoma. While studying the role of the melanoma-specific long non-coding RNA SAMMSON in tumor initiation, the researchers found that it boosts protein synthesis in different cellular compartments. Normal cells are alerted by modification in protein synthesis and react to this threat, but only if this process is altered in one compartment at the time. However, by altering the protein production in two different compartments, SAMMSON prevents the normal cells from recognizing the oncogenic threat resulting in unrestrained cell growth. The scientists suggest that any substance that destroys the equilibrium carefully created by SAMMSON is expected to deliver highly effective anti-melanoma responses. The study is published in the scientific journal Nature Structural and Molecular Biology.

SAMMSON has a role in melanoma initiation

Recent insights indicated that a large share of the human genome doesn't contribute to protein coding, but is nevertheless transcribed and thus produces non-coding RNAs that have a huge influence on essential biological processes and diseases.

"We have already demonstrated that SAMMSON appears early in the process of melanoma genesis and we were wondering whether this is an important event in cancer initiation" says Roberto Vendramin (VIB-KU Leuven), the main author of the paper. "We now know that SAMMSON is a melanoma-specific oncogene and thus its expression is an essential step in melanoma initiation", confirms Prof. Marine (VIB-KU Leuven).

The process of protein production occurs in two cellular compartments: the cytosol and the mitochondria (also known as the powerhouses of the cell). Synchronization of mitochondrial and cytoplasmic translation rates is critical for cellular fitness, and cancer cells are especially vulnerable to translational uncoupling. "Our work now proves that SAMMSON, which is aberrantly expressed in melanoma, has an essential role in this process by concertedly enhancing protein synthesis in the cytosol and mitochondria. SAMMSON behaves as a selfish molecule that tries to perpetuate its own expression by increasing proliferation of malignant cells through increased translation." says Prof. Leucci (KU Leuven).

Next steps: impairment of mitochondrial translation as a melanoma vulnerability

This work established the importance of coordinated translation regulation for cancer progression and the essential role of SAMMSON in this process in melanoma. Prof. Leucci: "Considering the fundamental nature of this phenomenon we will explore the possibility that other long non-coding RNAs can exert the same function in melanoma and other cancers. Perhaps more importantly, the results of this collaborative effort can serve as a solid foundation towards new skin cancer treatments that interfere with the translational activity in the mitochondria." VIB and collaborators are actively pursuing translation of the findings reported in Vendramin et al. and the previous paper for the benefit of patients.

Publication

Vendramin et al., SAMMSON fosters cancer cell fitness by concertedly enhancing mitochondrial and cytosolic translation in Nature Structural and Molecular Biology.

Funding

The study is supported by the King Baudouin Foundation (Fund Emile Carpentier – Fund Andre? Vander Stricht – Fund Van Damme 2017-J1810830-207301) and led by professor Eleonora Leucci (KU Leuven) and professor Chris Marine (VIB-KU Leuven). Roberto Vendramin is supported by an FWO fellowship.

Questions from patients

A breakthrough in research is not the same as a breakthrough in medicine. The realizations of VIB researchers can form the basis of new therapies, but the development path still takes years. This can raise a lot of questions. That is why we ask you to please refer questions in your report or article to the email address that VIB makes available for this purpose: [email protected]. Everyone can submit questions concerning this and other medically-oriented research directly to VIB via this address.

###

Media Contact

Sooike Stoops
[email protected]
32-924-46611
@VIBLifeSciences

http://www.vib.be

Share12Tweet8Share2ShareShareShare2

Related Posts

Checkpoint Inhibitors Plus Antiangiogenics in Liver Cancer

October 27, 2025

New Cleveland Clinic Study Reveals That Up to 5% of Americans Harbor Cancer-Linked Genetic Mutations

October 27, 2025

Innovative Tool Developed to Detect Hidden ‘Zombie Cells’

October 27, 2025

Epigenetic Changes in PHOX2A, CDH2 Drive Myeloma

October 27, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1286 shares
    Share 514 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    197 shares
    Share 79 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    134 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Scripps Research Secures $4 Million to Enhance Platform Targeting Neurodevelopmental Disorders

Exploring Iron, Aging, and Fibrosis in Endometriosis

Revolutionary CMOS Imager Enables Single-Neuron Brain Imaging

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.