• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Insights into lithium metal battery failure open doors to doubling battery life

Bioengineer by Bioengineer
February 8, 2021
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: XU Gaojie

Lithium metal batteries could double the amount of energy held by lithium-ion batteries, if only their anodes didn’t break down into small pieces when they were used.

Now, researchers led by Prof. CUI Guanglei from the Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT) of the Chinese Academy of Sciences (CAS) have identified what causes lithium metal batteries (LMBs) to “self-destruct” and proposed a way to prevent it. The findings were published in Angewandte Chemie on Jan. 19.

This offers hope of radically enhancing the energy held in batteries without any increase in their size, and at reduced cost.

In fact, LMBs were the original concept for long-lasting batteries, but their anodes break down into small pieces – a microstructure known as “pulverization”. The LMBs thus quickly stop working when being cycled through. Lithium-ion batteries were actually a compromise: tweaking the LMB concept prevented the anode failure by using graphite anode, but at a cost of much lower energy storage levels.

One of the problems facing LMB development has been a lack of understanding, and even controversy over, why the anode fails. Conventionally, it is argued that tiny tree-branchlike structures of lithium called dendrites form during cycling of the battery. In addition, the pulverization structure always appears in any failed LMB.

What has been contentious though is whether lithium hydride (LiH) is present in the pulverization structure. LiH has poor electrical conductivity, but it is also very brittle, which would explain the pulverization. In the past, one group of researchers had identified LiH as a distinct type of dendrite, but another group found nothing along these lines.

However, both research groups had only used simplified versions of an LMB. To properly investigate what is going on, the QIBEBT research team ran a practical LMB under typical operating conditions.

Using a type of mass spectrometry (an analytical tool that allows identification of unknown compounds), the researchers were able to confirm that LiH did indeed become the dominant compound on the anode as the battery was being used.

But more importantly, they found that this chemical reaction is temperature sensitive: it only happens at room temperature, and the process can be reversed if the temperature rises above this level.

This suggests ways that the production of LiH can be prevented, either via heat treatment or a pressure treatment producing the same effect, or a combination of the two. Additional options include suppressing the production of hydrogen ions, or the placement of interface materials that can protect the lithium from the hydrogen.

“Coming out of this study, the next step is to produce some form of really good lithium protection,” said CUI Guanglei, lead author and a scientist with QIBEBT, “which should then deliver on the long-held promise of practical applications of the ‘holy grail’ of lithium metal batteries.”

###

Media Contact
CHENG Jing
[email protected]

Original Source

http://english.cas.cn/

Related Journal Article

http://dx.doi.org/10.1002/anie.202013812

Tags: Chemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)
Share12Tweet8Share2ShareShareShare2

Related Posts

AI Accelerates Development of Stronger, More Durable Plastics

AI Accelerates Development of Stronger, More Durable Plastics

August 5, 2025
blank

Dynamic Laws of Multispectral Camouflage: Nature-Inspired Coding Unveiled

August 5, 2025

Revealing the Mechanisms Behind Voltage Decay in LiMn₀.₇Fe₀.₃PO₄ Cathodes During Battery Cycling

August 5, 2025

Entangled Heavy Fermions: Pioneering the Next Frontier in Quantum Computing

August 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    73 shares
    Share 29 Tweet 18
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ultrasound L-Lysine Boosts Pork Color Stability

Algal Breakthrough: Researchers Develop Enhanced Blue Food Dye

Chronic Illness Links to Kids’ Play and Mental Health

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.