• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, January 8, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Insects contribute to atmospheric electricity

Bioengineer by Bioengineer
October 24, 2022
in Biology
Reading Time: 3 mins read
0
AI rendering of bees and electricity
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

By measuring the electrical fields near swarming honeybees, researchers have discovered that insects can produce as much atmospheric electric charge as a thunderstorm cloud. This type of electricity helps shape weather events, aids insects in finding food, and lifts spiders up in the air to migrate over large distances. The research, appearing on October 24 in the journal iScience, demonstrates that living things can have an impact on atmospheric electricity.

AI rendering of bees and electricity

Credit: Ellard Hunting

By measuring the electrical fields near swarming honeybees, researchers have discovered that insects can produce as much atmospheric electric charge as a thunderstorm cloud. This type of electricity helps shape weather events, aids insects in finding food, and lifts spiders up in the air to migrate over large distances. The research, appearing on October 24 in the journal iScience, demonstrates that living things can have an impact on atmospheric electricity.

“We always looked at how physics influenced biology, but at some point, we realized that biology might also be influencing physics,” says first author Ellard Hunting, a biologist at the University of Bristol. “We’re interested in how different organisms use the static electric fields that are virtually everywhere in the environment.”

As with most living creatures, bees carry an innate electric charge. Having found that honeybee hive swarms change the atmospheric electricity by 100 to 1,000 volts per meter, increasing the electric field force normally experienced at ground level, the team developed a model that can predict the influence of other species of insects.

“How insect swarms influence atmospheric electricity depends on their density and size,” says co-author Liam O’Reilly, a biologist at the University of Bristol. “We also calculated the influence of locusts on atmospheric electricity, as locusts swarm on biblical scales, sizing 460 square miles with 80 million locusts in less than a square mile; their influence is likely much greater than honeybees.”

“We only recently discovered that biology and static electric fields are intimately linked and that there are many unsuspected links that can exist over different spatial scales, ranging from microbes in the soil and plant-pollinator interactions to insect swarms and perhaps the global electric circuit,” says Ellard.

“Interdisciplinarity is valuable here—electric charge can seem like it lives solely in physics, but it is important to know how aware the whole natural world is of electricity in the atmosphere,” says co-author Giles Harrison, an atmospheric physicist from the University of Reading.

###

Financial support provided by the Swiss National Science Foundation and the European Research Council.

iScience, Hunting et al., “Observed electric charge of insect swarms and their contribution to atmospheric electricity.” https://www.cell.com/iscience/fulltext/S2589-0042(22)01513-9

iScience (@iScience_CP) is an open-access journal from Cell Press that provides a platform for original research and interdisciplinary thinking in the life, physical, and earth sciences. The primary criterion for publication in iScience is a significant contribution to a relevant field combined with robust results and underlying methodology. Visit: http://www.cell.com/iscience. To receive Cell Press media alerts, contact [email protected].



Journal

iScience

DOI

10.1016/j.isci.2022.105241

Method of Research

Observational study

Subject of Research

Animals

Article Title

Observed electric charge of insect swarms and their contribution to atmospheric electricity

Article Publication Date

24-Oct-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Engineering Bicarbonate Transport Activates CO2 Concentration

Engineering Bicarbonate Transport Activates CO2 Concentration

January 8, 2026
Gut Microbes Fuel Auto-Brewery Syndrome, Study Finds

Gut Microbes Fuel Auto-Brewery Syndrome, Study Finds

January 8, 2026

Rewrite Integrating genome-wide association analysis and selection signatures to identify the key genes affecting the primary economic traits of pigs as a headline for a science magazine post, using no more than 8 words

January 8, 2026

Genome of Alpine Streptomyces Reveals Bioactive Compounds

January 8, 2026

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    153 shares
    Share 61 Tweet 38
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    143 shares
    Share 57 Tweet 36
  • Impact of Vegan Diet and Resistance Exercise on Muscle Volume

    46 shares
    Share 18 Tweet 12
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    44 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Engineering Bicarbonate Transport Activates CO2 Concentration

Fibre-Like Loss Achieved in Photonic Integration

New Pathway Controls Fat Breakdown Without Catecholamines

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.