• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Inhibiting post-translational modifications may lower oxidative stress in the aging eye

Bioengineer by Bioengineer
March 11, 2019
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

This article is by D.W.-C. Li et al. is published in Current Molecular Medicine, Volume 18, Issue 9, 2018

Retinal pigment epithelial (RPE) cells are a pigmented cells present in a monolayer outside the retinal. These cells are essential for absorbing scattered light in the eye and maintain visual function. As a person ages, these cells can die without, causing age-related macular degeneration (AMD), a blinding eye disease that affects more than 30 million people worldwide. Oxidative stress-induced RPE cell senescence is considered as one the greatest risk factors contributing to the onset of AMD. Other factors include hereditary factors which modulate inflammation.

Most cellular processes are regulated by the expression of genes into specific proteins. Some proteins (such as SUMO proteins) can modify existing proteins to trigger cellular processes. Cell senescence is such a process and this is believed to be regulated by SUMOylation – an essential post-translational modification reaction in vertebrates – which results in the conjugation of SUMO proteins to target proteins involved in the process.

A team of researchers from the Zhongshan Ophthalmology Center, Guangzhou, China, led by Dr. David W. Li and Dr. Lili Gong, studied SUMOylation processes in mouse retinae in an effort to investigate cell senescence in RPE cells. The researchers found decreased SUMO ligase expression in aging mouse retina samples and in senescent RPE cells, a finding which indicates reduced global protein SUMOylation levels. Interestingly, the researchers also learned that the localized distribution of SUMO ligases, such as E1 enzyme UBA2, E2 enzyme UBC9, was dramatically changed during the oxidative stress-induced RPE cell senescence. “This altered distribution of the major SUMO machinery suggests that the SUMOylation substrates may be altered and both loss of SUMOylation and an increase in new SUMOylation products may occur during cell senescence,” says Dr. Lili. The researchers believe that in addition to decreased SUMOylation levels, SUMOylation targets in senescent cells are likely different from those in young cells and this difference may be accounted for by the spatial regulation of SUMO ligases within RPE cells.

Additionally, the researchers investigated the inhibition of SUMOylation with two small molecules and ML792 (that targets the SUMO E1 enzyme). Their results indicate that ML792 treatment alleviated the expression of senescence associated secretory phenotype (SASP) genes – or in other words, the aged cell variants – in RPE cells, as several proinflammatory factor was observed to be down-regulated by ML972 treatment. “This is the first report that shows that inhibition of SUMOylation has reduced SASP, expression”, notes Dr. Lili. Their research can grow the understanding of AMD pathogenesis and lead to new avenues for treatment. Dr. Lili adds that “it is very intriguing considering the effects of SASP factors in compromising RPE cell barrier functions and resulting in immune cell invasion, which contributes to the severity of retina degeneration and AMD pathogenesis.”

###

To obtain the article please visit, please visit: http://www.eurekaselect.com/168786

Media Contact
Faizan ul Haq
[email protected]
http://dx.doi.org/10.2174/1566524019666190107154250

Tags: Alternative MedicineClinical TrialsEnvironmental HealthInternal MedicineMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

ICU Nurses’ Perspectives on End-of-Life Care

October 5, 2025

Exchange Transfusion Impact on Severe Infant Pertussis

October 5, 2025

Smyd3 Loss Boosts WAT Browning via PPARγ Enhancement

October 5, 2025

Spectator Medicine: Analyzing Men’s Ice Hockey Health Trends

October 5, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    92 shares
    Share 37 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

ICU Nurses’ Perspectives on End-of-Life Care

Exploring Splicing Patterns in Medicinal Rheum Palmatum

Exchange Transfusion Impact on Severe Infant Pertussis

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.