• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, July 6, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Infrared imaging to measure glymphatic function

Bioengineer by Bioengineer
May 17, 2022
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The glymphatic system facilitates fluid exchange in the central nervous system and clears dissolved wastes. This anatomically organized movement occurs primarily during sleep and is supported by astroglial neural cells via water channels called aquaporins. These channels line the perivascular pathways and facilitate cerebrospinal fluid and interstitial fluid exchange throughout the brain.

Infrared cerebrospinal fluid tracer dynamically imaged with the LICOR Pearl IR imaging system allows assessment of tracer movement over the surface of the cerebral convexity as a surrogate measure of glymphatic exchange.

Credit: Credit: S.A. Keil et al., doi 10.1117/1.NPh.9.2.021915

The glymphatic system facilitates fluid exchange in the central nervous system and clears dissolved wastes. This anatomically organized movement occurs primarily during sleep and is supported by astroglial neural cells via water channels called aquaporins. These channels line the perivascular pathways and facilitate cerebrospinal fluid and interstitial fluid exchange throughout the brain.

Glymphatic dysfunction has been implicated in numerous pathological conditions, including Alzheimer’s disease, traumatic brain injury, and stroke. Existing methods for assessing glymphatic function have been challenging. Dynamic methods such as 2-photon microscopy and contrast-enhanced magnetic resonance imaging (MRI) require expensive instrumentation and specific technical skills, yet they have other limitations. For instance, 2-photon microscopy cannot reliably access deeper brain regions. The more readily implemented and widely used method of slice-based fluorescent imaging permits assessment at only a snapshot of a single time point, so obtaining a view across time requires many animals and much effort.

To address the need for combined dynamic imaging and histologic assessment in glymphatic research, a team of researchers at the US Department of Veterans Affairs (VA) Puget Sound Health Care System and the University of Washington (UW) in Seattle recently developed a straightforward and novel dynamic imaging paradigm as a surrogate measure of glymphatic flux within the brain. As reported in Neurophotonics, the technique uses a widely available small animal infrared (IR) imaging system (LICOR Pearl) to obtain a sensitive dynamic surrogate measure of glymphatic exchange. It does so by tracking the distribution of an IR tracer in cerebrospinal fluid in real time over the cortical surface of a living mouse brain.

The technique enables measurement of the temporal dynamics of glymphatic functions, as well as the ability to follow up with the gold standard slice-based fluorescence analysis and histological evaluation for concurrent visualization of resolution of deeper structures. This approach allows both dynamic and structural insights to be assessed in parallel. The technique works great for research involving mice, but not for larger animals like rats, due to the size of the imaging platform and the thicker skulls of larger rodents.

The team’s reliance on affordable and widely available equipment readily allows for replication and widespread adoption. According to the study senior author Jeffrey Iliff, Associate Director for Research at the VISN20 Mental Illness, Research, Education, and Clinical Center of the VA Puget Sound Health Care System and the Arthur J. and Marcella McCaffray Professor in Alzheimer’s Disease at the UW School of Medicine, “The glymphatic field is expanding rapidly, both in the clinical and pre-clinical realms. With so much work to do, we hope that this simple, low-cost approach will place rigorous study of glymphatic biology within the reach of a wider, more diverse group of research teams and institutions.”

Read the open access article by S.A. Keil et al., “Dynamic infrared imaging of cerebrospinal fluid tracer influx into the brain,” Neurophotonics 9(3) 031915 (2022), doi 10.1117/1.NPh.9.2.021915.



Journal

Neurophotonics

DOI

10.1117/1.NPh.9.3.031915

Article Title

Dynamic infrared imaging of cerebrospinal fluid tracer influx into the brain

Article Publication Date

17-May-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

How the epidermal growth factor (EGF) receptor changes its conformation when it binds to EGF.

How a shape-shifting receptor influences cell growth

July 6, 2022
COVID-19 spike protein atomistic model

COVID-19 virus spike protein flexibility improved by human cell’s own modifications

July 5, 2022

A rhythmic small intestinal microbiome prevents obesity and type 2 diabetes

July 5, 2022

Cross-disciplinary UC San Diego team explores nervous system workings related to PTSD, other mental health disorders

July 5, 2022

POPULAR NEWS

  • blank

    Telescopic contact lenses

    40 shares
    Share 16 Tweet 10
  • Oregon State University research finds evidence to suggest Pacific whiting skin has anti-aging properties that prevent wrinkles

    38 shares
    Share 15 Tweet 10
  • Emerging Omicron subvariants BA.2.12.1, BA.4 and BA.5 are inhibited less efficiently by antibodies

    37 shares
    Share 15 Tweet 9
  • The pair of Orcas deterring Great White Sharks – by ripping open their torsos for livers

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Violence/CriminalsVaccineWeaponryZoology/Veterinary ScienceWeather/StormsUrogenital SystemUrbanizationVaccinesVirologyVehiclesVirusUniversity of Washington

Recent Posts

  • New imaging technique allows researchers to see gene expression in brains of live mice in real time
  • Gecko feet are coated in an ultra-thin layer of lipids that help them stay sticky
  • Leon & Friends, SynGAP Research Fund USA & SRF Europe partner to grant €180,000 to Professor Courtney of Turku Bioscience Centre, Finland
  • Deep Longevity granted the first microbiomic aging clock patent
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....