• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, July 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Indirect surpassing CO2 utilization in membrane-free CO2 battery

Bioengineer by Bioengineer
March 17, 2021
in Chemistry
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: UNIST

A recent study, affiliated with UNIST has unveiled a novel system, capable of producing hydrogen and electricity quickly and effectively while eliminating carbon dioxide (CO?) emissions significantly.

Published in the January 2021 issue of Nano Energy, this breakthrough has been carried out by Professor GunTae Kim and his research team in the School of Energy and Chemical Engineering at UNIST. In this study, the research team succeeded in developing a membrane-free aqueous metal-CO? battery. Unlike the existing aqueous metal-CO? systems, the new battery is not only easier to manufacture, but also allows continuous operation with one type of electrolyte.

The research team designed a membrane-free (MF) Mg-CO2 battery, as an advanced approach to sequester CO2 emissions by generating electricity and value-added chemicals without any harmful by-products. According to the research team, their MF Mg-CO2 battery operates based on the indirect utilization of CO2 with facile hydrogen generation process. It has been also found that the new battery exhibits high faradaic efficiency of 92.0%.

“In order to translate the newly-developed laboratory-scale MF Mg-CO2 battery technology into a commercial reality, we have envisioned an operational prototype system that produces electricity and value-added chemicals, as a cornerstone to better support sustainable human life from CO2 and earth-abundant renewable power (e.g., wind, solar, seawater),” noted the research team.

The MF Mg-CO2 battery system has a structure similar to that of hydrogen fuel cells for use in cars, since it only requires a Mg-metal negative electrode, an aqueous electrolyte, and a positive-electrode catalyst. However, unlike the existing fuel cells, they are based on aqueous electrolytes. As a result, the newly-developed MF Mg-CO2 battery had successfully sequestered CO2 emissions by generating electricity and value-added chemicals without any harmful by-products.

“Our findings indicate great benefits for the newly-developed MF Mg-CO2 battery technology to produce various value-added chemicals of practical significance and electricity from CO2 without any wasted by-products,” noted the research team. “Through this we have opened the door to electrochemical utilization of CO2 with indirect circulation for future alternative technologies.”

###

Journal Reference

Jeongwon Kim, Arim Seong, Yejin Yang, et al., “Indirect surpassing CO2 utilization in membrane-free CO2 battery,” Nano Energy, (2021).

Media Contact
JooHyeon Heo
[email protected]

Original Source

https://news.unist.ac.kr/indirect-surpassing-co2-utilization-in-membrane-free-co2-battery/

Tags: Chemistry/Physics/Materials SciencesResearch/DevelopmentRobotry/Artificial IntelligenceTechnology Transfer
Share12Tweet8Share2ShareShareShare2

Related Posts

Architecture of VBayesMM

Unraveling Gut Bacteria Mysteries Through AI

July 4, 2025
Visulaization of ATLAS collision

Can the Large Hadron Collider Prove String Theory Right?

July 3, 2025

Breakthrough in Gene Therapy: Synthetic DNA Nanoparticles Pave the Way

July 3, 2025

Real-Time Electrochemical Microfluidic Monitoring of Additive Levels in Acidic Copper Plating Solutions for Metal Interconnections

July 3, 2025
Please login to join discussion

POPULAR NEWS

  • Zheng-Rong Lu

    Pancreatic Cancer Vaccines Eradicate Disease in Preclinical Studies

    75 shares
    Share 30 Tweet 19
  • Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    72 shares
    Share 29 Tweet 18
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    69 shares
    Share 28 Tweet 17
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

ChatGPT’s Potential in Stated-Calorie Diet Planning

Key Amino Acid Changes Attenuate Yellow Fever Vaccine

Giardia Triggers Type 2 Immunity That Reduces Gut Inflammation

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.