• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

In-situ nanoscale insights into the evolution of solid electrolyte interphase shells

Bioengineer by Bioengineer
April 2, 2021
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ©Science China Press

The interfacial decomposition products forming the so-called solid-electrolyte interphase (SEI) during the first charging/discharging significantly determine the electrochemical performances of lithium (Li) batteries. To date, the dynamic evolutions, chemical compositions, stabilities and the influencing factors of the SEI films have been captured tremendous attentions.

It’s noted that, in contrast to the SEI film formation at the surface of electrodes, a kind of SEI shells usually conformally forms at the outmost layer of the on-site deposited Li once the freshly deposited Li contacts with the electrolyte, which could directly influence Li nucleation, growth behaviors and electrochemical properties at the electrode/electrolyte interface.

Furthermore, the chemical/morphological instabilities of the on-site formed SEI shell pose challenges for the in-situ characterizations. Directly capturing the dynamic evolution of the SEI shells is crucial to interprete their impacts on the anode/elelctrolyte interface and battery performances.

The electrochemical atomic force microscopy (EC-AFM) enables the real-time characterization of the morphology change, mechanical modulus and potential/current distribution at the electrode/electrolyte interface under working conditions, providing an important in-situ analysis method with high spatial resolution for exploring the dynamic evolution of the on-site formed SEI shell on the deposited Li.

Recently, Prof. Li-Jun Wan and Prof. Rui Wen et al. provide the straightforward visualized evidence of SEI shells evolution during Li deposition/stripping to reveal anode degradation via in-situ EC-AFM.

During Li deposition, the quasi-spherical Li particles nucleate and grow on a Cu electrode. Subsequently, the collapse of the SEI shells is distinctly captured with the continuous Li stripping. As the cycling progresses, new Li deposits are prone to renucleating on the deposit-free sites with higher electrochemical activity. The fresh SEI shells form on freshly-deposited Li while the original SEI shells retain their collapsed morphology at the same position. Severe SEI regeneration/collapse along with electrolyte depletion and interfacial impedance increasing take one of the responsiblities for the degradation of anodes.

This work reveals the interfacial evolution at nanoscale, provides deep insights into the fundamental comprehension of SEI properties and further guides improvement strategies of the interface design in Li batteries.

###

See the article: Shi Y, Liu GX, Wan J, Wen R, Wan LJ. In-situ nanoscale insights into the evolution of solid electrolyte interphase shells: revealing interfacial degradation in lithium metal batteries. Sci China Chem, 2021, 64, doi:10.1007/s11426-020-9984-9.

https://www.sciengine.com/publisher/scp/journal/SCC/doi/10.1007/s11426-020-9984-9?slug=fulltext

Media Contact
Rui Wen
[email protected]

Related Journal Article

http://dx.doi.org/10.1007/s11426-020-9984-9

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    63 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Smart ROS Nanoplatform Boosts Targeted Cancer Therapy

Creating AI Companions for Caregiver Role Transitions

Antenatal Origins and Treatments of Neurodevelopment in CHD

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.