• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, December 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

In singing mice, scientists find clue to our own rapid conversations

Bioengineer by Bioengineer
February 28, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Bret Pasch

Studying the songs of mice from the cloud forests of Costa Rica, researchers from New York University School of Medicine and The University of Texas at Austin have identified a brain circuit that might enable the high-speed back and forth of human conversation. This insight, published online today in the journal Science, could help researchers better understand the causes of speech disorders and point the way to new treatments.

When two male Alston’s singing mice meet–one on his home turf and the other from outside–they sing a kind of duet like two opera performers staking their claim on territory or vying for the attention of a maiden. But the outsider, called a recruit, starts singing only when the resident male has finished his song and then immediately stops if the resident starts up again.

“The recruit is asserting that he’s there, and he’s going to be competing with the resident,” said Steven Phelps, study co-author, professor of integrative biology and director of the Center for Brain, Behavior and Evolution at UT Austin. “The resident says I’m already here and I plan to stay.”

This rapid alternation, called vocal turn-taking, is somewhat like two humans having a conversation. Standard laboratory mice don’t appear to have these kinds of vocal exchanges. Thus, the new study represents a novel mammalian model to examine brain mechanisms behind the sub-second precision of vocal turn-taking.

“Neuroscientists have traditionally focused on a small number of model organisms to better understand the human brain,” said Phelps, who pioneered the study of singing mice as a model for the neuroscience of communication and social behavior in 2002. “This study shows that scientists can gain new and exciting insights by tapping into the enormous wealth of natural diversity among animals.”

The study found that, along with brain areas that tell muscles to create notes, separate circuits in the motor cortex enable the fast starts and stops that form a conversation between vocal partners.

“Our work directly demonstrates that a brain region called the motor cortex is needed for both these mice and for humans to vocally interact,” said senior study author Michael Long, an associate professor of neuroscience at NYU School of Medicine.

“By segregating sound production and control circuits, evolution has equipped the brains of singing mice with the tight vocal control also seen in cricket exchanges, bird duets, and possibly, human discussion,” added study co-first author Arkarup Banerjee, a postdoctoral scholar in Long’s lab.

Despite the ubiquity of vocal exchanges in the natural world, Banerjee said, there were previously no suitable mammalian models in neuroscience for their study.

Moving forward, the researchers are already using their mouse model to guide related exploration of speech circuits in human brains. By understanding the activity that helps to engage two brains in conversation, they can look for the processes that go awry when disease interferes with communication, potentially spurring the development of new treatments for many disorders.

“We need to understand how our brains generate verbal replies instantly using nearly a hundred muscles if we are to design new treatments for the many Americans for whom this process has failed, often because of diseases such as autism or traumatic events like stroke,” said Long.

Past work by Phelps and his team at UT Austin showed that in addition to attracting mates and repelling rival males of the same species, the calls of the males of one species of singing mice repels males of a similar but smaller species.

###

Along with Long, Phelps and Banerjee, study authors from the NYU Neuroscience Institute and Department of Otolaryngology at NYU School of Medicine were Daniel Okobi Jr. and Andrew Matheson.

This research was supported by the New York Stem Cell Foundation, the Simons Foundation Society of Fellows and the Simons Collaboration on the Global Brain.

This release was based in part on a press release by NYU School of Medicine.

Media Contact
Marc Airhart
[email protected]

Tags: BiologyHearing/SpeechLanguage/Linguistics/SpeechMedicine/Healthneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Unveiling Hormone Genes in Prunus persica Seed Dormancy

Unveiling Hormone Genes in Prunus persica Seed Dormancy

December 15, 2025
blank

Harnessing Microbial Siderophores for Plant Iron Nutrition

December 15, 2025

Zoonotic Streptococcus Uses Glucose to Boost Growth

December 15, 2025

Genomic Insights into Drug-Resistant Salmonella in China

December 15, 2025
Please login to join discussion

POPULAR NEWS

  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    122 shares
    Share 49 Tweet 31
  • Nurses’ Views on Online Learning: Effects on Performance

    69 shares
    Share 28 Tweet 17
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    71 shares
    Share 28 Tweet 18

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Long-Term Quality of Life After COVID-19 Recovery

Resilience Amid Challenges: Mothers of Autistic Children in Palestine

Gender Bias Shapes Telehealth Use in Obesity

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.