• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, May 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

In search of muons: Why they switch sites in antiferromagnetic oxides

Bioengineer by Bioengineer
January 25, 2024
in Chemistry
Reading Time: 4 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Muon spectroscopy is an important experimental technique that scientists use to study the magnetic properties of materials. It is based on “implanting” a spin-polarized muon in the crystal and measuring how its behavior is affected by the surroundings. The technique relies on the idea that the muon will occupy a well-identified site that is mainly determined by electrostatic forces, and that can be found by calculating the material’s electronic structure. 

Muon sites in MnO

Credit: Bonfà et al., Phys. Rev. Lett. 132, 046701 (2024).

Muon spectroscopy is an important experimental technique that scientists use to study the magnetic properties of materials. It is based on “implanting” a spin-polarized muon in the crystal and measuring how its behavior is affected by the surroundings. The technique relies on the idea that the muon will occupy a well-identified site that is mainly determined by electrostatic forces, and that can be found by calculating the material’s electronic structure. 

But a new study led by scientists in Italy, Switzerland, UK and Germany has found that, at least for some materials, that is not the end of the story: the muon site can change due to a well-known but previously neglected effect, magnetostriction. 

Pietro Bonfà from the University of Parma, lead author of the study just published in Physical Review Letters, explains that his group and their colleagues at the University of Oxford (UK) have been using density-functional theory (DFT) simulations for at least a decade to find muon sites. “We started with tricky cases, such as europium oxide and manganese oxide, and in both cases, we could not find a reasonable way to reconcile DFT predictions and the experiments”, he says. “We then tested simpler systems and we had many successful predictions, but those two cases were really bothering us. These compounds should be easy and instead turned out to be super complicated and we did not understand what was happening. Manganese oxide is a textbook case of an antiferromagnetic system, and we could not explain muon spectroscopy results for it, which was a bit embarrassing”.

The problem, he explains, was the contradiction between the expectation to find the muon in a high symmetry position, and its well-known tendency to make bonds with oxygen atoms. The antiferromagnetic order of the material reduces the symmetry, and the position close to the oxygen atoms becomes incompatible with experiments. 

Bonfà suspected that the explanation could be linked to the material undergoing a magnetic phase transition and started trying to reproduce the phenomenon in simulations of manganese oxide. “Because it is a complicated system, you must add some corrections to DFT, such as the Hubbard U parameter” he says. “But we were choosing its value empirically, and when you do that, you have a lot of uncertainty, and the results can change dramatically depending on the value you choose”. Still, Bonfà’s initial simulations suggested that the muon positions could be driven by magnetostriction, a phenomenon that causes a material to change its shape and dimensions during magnetization. To prove it beyond doubt, he teamed up with the MARVEL laboratories at EPFL and PSI of Nicola Marzari and Giovanni Pizzi.

“We used a state-of-the-art method called DFT+U+V, which was very important to make simulations more accurate” explains Iurii Timrov, a scientist in the Laboratory for Materials Simulations at PSI and co-author of the study. This method can be used with onsite U and intersite V Hubbard parameters that are computed from first principles instead of being chosen empirically, thanks to the use of density-functional perturbation theory for DFT+U+V that was developed within MARVEL and implemented in the Quantum ESPRESSO package. “Although we had already figured out that magnetostriction was at play, having the correct information on the building blocks of the simulation was very important, and that came from Iurii’s work” adds Bonfà. 

In the end, the solution of the puzzle was relatively simple: magnetostriction, which is the interplay between magnetic and elastic degrees of freedom in the material, causes a magnetic phase transition in MnO at 118K, at which the muon site switches. Above that temperature, the muon becomes delocalized around a network of equivalent sites – which explains the unusual behavior observed in experiments at high temperatures. 

The scientists expect that the same may be true also for many other rocksalt structured magnetic oxides. In the future, Timrov explains, the group wants to keep studying the same material also including temperature effects, using another advanced technique developed in MARVEL and called stochastic self-consistent harmonic approximation. In addition, and in collaboration with Giovanni Pizzi’s group at the Paul Scherrer Institute, this approach will be made available to the community through the AiiDAlab interface, so that all experimentalists can use it for their own studies. 



Journal

Physical Review Letters

DOI

10.1103/PhysRevLett.132.046701

Method of Research

Computational simulation/modeling

Article Title

Magnetostriction-Driven Muon Localization in an Antiferromagnetic Oxide

Article Publication Date

24-Jan-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Optical and gas overlay

Star Formation in Galaxies Depends More on Gas Location Than Quantity

May 21, 2025
Remotely Moving Objects Underwater

Using Sound to Remotely Move Objects Underwater #ASA188

May 20, 2025

Breaking Through the Bottleneck: Advancing CO2 Capture and Conversion Technologies

May 20, 2025

Discovery and Biosynthesis of Acylsulfenic Acid Natural Product

May 20, 2025

POPULAR NEWS

  • Effects of a natural ingredients-based intervention targeting the hallmarks of aging on epigenetic clocks, physical function, and body composition: a single-arm clinical trial

    Natural Supplement Shows Potential to Slow Biological Aging and Enhance Muscle Strength

    90 shares
    Share 36 Tweet 23
  • Analysis of Research Grant Terminations at the National Institutes of Health

    79 shares
    Share 32 Tweet 20
  • Health Octo Tool Links Personalized Health, Aging Rate

    67 shares
    Share 27 Tweet 17
  • Scientists Discover New Electricity-Conducting Species, Honor Tribe in Naming

    55 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Comparing First Trimester Preeclampsia Screening in Indonesia

Standardizing Disposable Vape Devices Could Reduce Youth Appeal, Study Suggests

New Criteria Set to Uncover the True Severity of Brain Injuries

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.