• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Improving recyclable waste classification with laser-induced breakdown spectroscopy

Bioengineer by Bioengineer
July 25, 2023
in Science News
Reading Time: 3 mins read
0
Identification and classification system for recyclable waste.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

WASHINGTON, July 25, 2023 – Managing and classifying waste accurately for reuse is a growing challenge in environmental protection. Addressing this issue, researchers at Hefei University of Technology in China have embarked on a quest to innovate in the realm of waste management, seeking effective methods that can simplify and improve the identification and classification of recyclable waste.

Identification and classification system for recyclable waste.

Credit: Lei Yang

WASHINGTON, July 25, 2023 – Managing and classifying waste accurately for reuse is a growing challenge in environmental protection. Addressing this issue, researchers at Hefei University of Technology in China have embarked on a quest to innovate in the realm of waste management, seeking effective methods that can simplify and improve the identification and classification of recyclable waste.

Delving into the intricacies of waste management, the researchers explored the application of laser-induced breakdown spectroscopy technology for the identification and classification of recyclable waste and discuss their work in AIP Advances, from AIP Publishing. They collected and analyzed the spectra of 80 recyclable waste samples, classifying them into paper, plastic, glass, metal, textile, and wood based on LIBS spectra. This crucial step toward waste management optimization demonstrates a significant stride toward improving environmental sustainability and promoting resource reuse.

“We have used LIBS technology for the first time to identify and classify recyclable waste,” said author Lei Yang. “This method has accurate, reliable, fast detection results, and can achieve automatic detection.”

Given the complexities of waste materials and the importance of precise classification, the researchers further subclassified metals and plastics into subcategories. With their unique properties, each subclass of waste holds a distinct potential for specific reuse and recycling practices, making accurate identification and classification a key to unlocking efficient waste management solutions.

The research methodology employed an array of machine learning models to further advance the identification process. Among the explored models, the combination of linear discriminant analysis (LDA) and random forest (RF) emerged as the most optimal for classifying recyclable waste. Additionally, for subclassifying metals and plastics, a combination of principal component analysis and RF was deemed most effective.

Researchers were struck by the accuracy of the model of LDA with RF in classifying recyclable waste, achieving an accuracy of 100%. For subclassifying metals and plastics, the model of PCA(9D) + RF scored the highest accuracy. These results indicate the potential of this method in improving recycling efficiency and waste management practices.

“What surprised us the most was that by using LIBS technology for classification and recognition without any preprocessing of the waste object, the results are satisfactory,” Yang said.

Fueled by the promising outcomes of their research, the team is eager to expand their work in the future. They plan to enhance their studies by increasing the number of waste samples and incorporating other forms of waste such as kitchen waste. Furthermore, they hope to deepen the understanding of transparent glass detection with LIBS, opening new avenues for recycling and waste management.

###

The article “Laser-induced breakdown spectroscopy identifies and classifies recyclable waste: A crucial step toward improved waste management” is authored by Lei Yang, Yong Xiang, Yinchuan Li, Wenyi Bao, Feng Ji, Jingtao Dong, Jingjing Chen, Mengjie Xu, Rongsheng Lu. It will appear in AIP Advances on July 25, 2023 (DOI: 10.1063/5.0149329). After that date, it can be accessed at https://doi.org/10.1063/5.0149329.

ABOUT THE JOURNAL

AIP Advances is an open access journal publishing in all areas of physical sciences—applied, theoretical, and experimental. The inclusive scope of AIP Advances makes it an essential outlet for scientists across the physical sciences. See https://pubs.aip.org/aip/adv.

###



DOI

10.1063/5.0149329

Article Title

Laser-induced breakdown spectroscopy identifies and classifies recyclable waste: A crucial step toward improved waste management

Article Publication Date

25-Jul-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Recombination and Transposons Influence Chironomus riparius Diversity

November 7, 2025

Parents’ Insights on Anorexia Family Therapy Change

November 7, 2025

Rising Trends in HIV Prevention for Young Adults

November 7, 2025

First Chinese Case of OTUD6B Syndrome Unveiled

November 7, 2025

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1301 shares
    Share 520 Tweet 325
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Recombination and Transposons Influence Chironomus riparius Diversity

Parents’ Insights on Anorexia Family Therapy Change

Rising Trends in HIV Prevention for Young Adults

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.