• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Improved catalyst may translate to petrochemical production gains

Bioengineer by Bioengineer
April 27, 2021
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new and improved zeolite could mean greater yield and longer lifecycles for petrochemical catalysts

IMAGE

Credit: University of Houston

Aromatics are major building blocks of polymers, or plastics, that turn up as everything from PET bottles for water to breathable, wrinkle-resistant polyester clothing. These petrochemicals comprise a specialized, value-added sector of the energy industry. The process for refining crude oil into useful aromatic streams for derivative use often involves the usage of a catalyst to facilitate chemical reactions. Among the various types of catalysts, many are zeolites – porous aluminosilicates – such as ZSM-5, a unique synthetic zeolite prolifically used in the upgrading of chemicals in alkylation and isomerization. Petrochemicals producers are constantly looking to minimize overhead costs to weather the volatility in commodity markets and provide a competitive end product to the average person.

Jeffrey Rimer, Abraham E. Dukler Professor at the University of Houston Cullen College of Engineering and Javier Garcia-Martinez, professor of inorganic chemistry at the University of Alicante, have uncovered a seeding method that simplifies the synthesis process and results in spontaneous pillaring of zeolites. The work is published in Advanced Materials. The process results in more aluminum concentrate in the zeolite and a unique crystal structure to facilitate chemical reactions with reduced carbon build up.

“This novel technique has the advantage of producing thicker well-formed sheets, which is important to produce highly stable materials – an important feature in most industrially relevant applications,” said Martinez.

“These hierarchical catalysts show unprecedented improvement in catalyst performance with 4-fold lower rates of deactivation, five-fold increases in activity and nearly two-fold increases in selectivity,” according to Rimer.

In industry, petrochemical producers often must take turnarounds every two years or so to regenerate a catalyst or replace it altogether. In the US, late first quarter to early second quarter usually sees several refiners take a two-week to two-month maintenance period to accommodate this. During that time, production and profit are lost, and while these improved hierarchical zeolite catalysts will not end turnarounds altogether, their smaller but stable 30-60 nanometer size supplies aluminum – active sites for catalysis – comparable to commercial ZSM-5. However, their small size simultaneously improves selectivity and reduces carbon build up. This hints at longer periods between costly turnarounds and increased yield.

The implications of this study extend to an improved understanding of zeolite nucleation – or first observation of a crystal – and point toward a new process for creating pillared zeolites without costly organic structure-directing agents (OSDA). Zeolites with hierarchical (pillared) structures have been prepared previously only with OSDAs, which operate as templates to form these unique structures.

“Until now, OSDAs were believed to be critical to synthesis of pillared zeolites, acting as templates to facilitate the formation of thin interconnecting nanosheets,” Rimer said.” But as we observed in this seeding process, these 30-60 nanometer nanosheets emerged from amorphous material and formed pillars without any template.”

“Previous attempts to produce these catalysts required costly organic agents and low yields were typically obtained, which greatly limited their commercial application,” Martinez said.

Seeding proved to be instrumental in synthesizing pillared zeolites with improve catalytic performance in Friedel-Craft alkylation and methanol to hydrocarbon reactions. This synthesis approach bypasses the typical energy intensive process of utilizing OSDAs. Organics previously thought essential for creating zeolites that can be utilized commercially are ultimately no longer necessary.

Next steps for this project include scaling up the process to show whether this improved zeolite catalyst can replicate its performance on industry scale. This research also functions as a springboard for further exploring the implications of seeding to produce other zeolites with unique structures and exceptional performance in commercial applications.

###

Media Contact
Laurie Fickman
[email protected]

Original Source

https://uh.edu/news-events/stories/2021/april-2021/04272021-zeolite-catalyst-jeff-rimer.php

Related Journal Article

http://dx.doi.org/10.1002/adma.202100897

Tags: Biomedical/Environmental/Chemical EngineeringChemistry/Physics/Materials SciencesEnergy SourcesEnergy/Fuel (non-petroleum)Industrial Engineering/ChemistryPolymer ChemistryResearch/Development
Share12Tweet8Share2ShareShareShare2

Related Posts

Macrophage-T Cell Interaction Boosts SLAMF1 in TB Defense

Macrophage-T Cell Interaction Boosts SLAMF1 in TB Defense

August 2, 2025
Strawberry Notch 1 Protects Neurons by Regulating Yeats4

Strawberry Notch 1 Protects Neurons by Regulating Yeats4

August 2, 2025

Revolutionary AI Tool Requires Minimal Data to Analyze Medical Images

August 1, 2025

Innovative Acid-Base Bifunctional Catalyst Enhances Production of Essential Lithium-Ion Battery Material

August 1, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10
  • Sustainability Accelerator Chooses 41 Promising Projects Poised for Rapid Scale-Up

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Macrophage-T Cell Interaction Boosts SLAMF1 in TB Defense

Strawberry Notch 1 Protects Neurons by Regulating Yeats4

Revolutionary AI Tool Requires Minimal Data to Analyze Medical Images

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.