• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Impeding white blood cells in antiphospholipid syndrome reduced blood clots

Bioengineer by Bioengineer
April 25, 2019
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

ANN ARBOR, Mich. – For men and women affected with antiphospholipid syndrome (APS), blood thinners are the main treatment option.

“Unfortunately, treatment with blood thinners does not prevent all cases of blood clotting in APS,” says Jason Knight, M.D., Ph.D., an assistant professor of rheumatology at Michigan Medicine. APS is an autoimmune condition characterized by blood clots in both genders and pregnancy loss in women.

“And those blood thinners do very little to impact the neurologic, hematologic and cardiac complications that regularly affect patients with the condition,” he adds.

Knight’s lab is currently pursuing the idea that anti-inflammatory treatment might provide a more targeted way to treat APS and give patients better control of the condition with fewer side effects.

“Specifically, we have been interested in the role that neutrophils, the most abundant white blood cells in circulation within the body, play in APS,” Knight says. “We’ve had prior studies demonstrate that neutrophils release sticky, spider web-like structures called neutrophil extracellular traps, also called NETs, that trigger the blood to clot in patients with APS.”

Now, Knight and team are building upon that prior work in a new study, published in Nature Communications, that investigated two drugs and their effects on NETs in mice with APS.

“We explored a new strategy for inhibiting those neutrophils, using experimental drug CGS21680 and an approved drug called dipyridamole,” says Knight, senior author of the study.

Testing potential treatments

Using mouse models with APS, the research team first administered CGS21680 and found that it reduced the levels of NETs in their blood.

“The drug works by activating adenosine receptors on the neutrophil surface,” says Ramadan Ali, Ph.D., a member of Knight’s lab and lead author of the study. “Adenosine is best known for its role in energy metabolism, but also has anti-inflammatory effects when released outside of cells. This appears to be a natural pathway for turning off inflammation.”

The research team observed that the drug also dramatically reduced the tendency of the mice to form blood clots in large veins.

“Testing this specific drug allowed us to show that activation of adenosine receptors is an effective strategy for preventing NET release in APS, and potentially other contexts as well,” Ali says. “We also found that the adenosine-receptor pathway can be exploited to prevent the formation of blood clots.”

Because CGS21680 is not approved for use in humans, the research team also decided to test the stroke drug dipyridamole, which has been shown previously to activate adenosine receptors.

“It was very gratifying to see that dipyridamole copied the results of the experimental drug that we began the study with,” Ali says. “It reduced both NET release and the tendency of the mice with APS to form clots.”

Translating from bench to bedside

While all of the work was preclinical, the research team believes it could be translated to patients with APS.

“This is what’s exciting,” Knight says. “We have identified a pathway here that is already influenced by a number of drugs approved for use in humans. Beyond dipyridamole, drugs like apremilast, used in patients with psoriasis and psoriatic arthritis, and methotrexate, used to treat rheumatoid arthritis and certain types of cancer, can also modulate adenosine-receptor signaling.”

He adds, “Translating these findings to a clinical trial in patients could therefore be very straightforward.”

Based on their findings, the research team plans to move forward with a pilot clinical trial in patients with APS.

“We’re very motivated to provide safer, more effective and more individualized treatments for patients with APS we see in our clinic,” Knight says. “The hope is that by continuing to pursue anti-neutrophil therapeutics, we will be treating APS closer to its source and thereby neutralize all aspects of the condition.”

###

This study was a multiple-year collaboration across the following authors and their departments at the University of Michigan including: Yogendra Kanthi, M.D. (vascular medicine); David Pinsky, M.D. (cardiology); Paula Bockenstedt, M.D. (hematology); Jose Diaz, M.D. (vascular surgery); and Joan Greve, Ph.D., and Olivia Palmer, Ph.D. (biomedical engineering). Additional authors of the study from Knight’s lab include: Alex Gandhi, Srilakshmi Yalavarthi, M.S., Andrew Vreede, M.D., He Meng, M.D., Ph.D., and Shanea Estes, MLI.

The study was funded by NIH-NHLBI (R01HL134846 to Knight) and the lead author (Ali) was supported by NIH-NIAMS through the Michigan Rheumatology training grant (T32AR007080).

Media Contact
Kylie Urban
[email protected]

Related Journal Article

https://labblog.uofmhealth.org/lab-report/impeding-white-blood-cells-antiphospholipid-syndrome-reduced-blood-clots
http://dx.doi.org/10.1038/s41467-019-09801-x

Tags: Internal MedicineMedicine/Health
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

New Study Reveals Early Heart Dysfunction in Young Adults with Bipolar Disorder

August 19, 2025
ATF4-Glutamine Axis: Key to Cancer Metabolism and Therapy

ATF4-Glutamine Axis: Key to Cancer Metabolism and Therapy

August 19, 2025

Morocco Tracks SARS-CoV-2 Shift to Omicron JN1

August 19, 2025

Feeling Connected at School Can Protect Bullied Teens from Depression, Study Finds

August 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhancing Ionic Conductivity in Garnet Electrolytes with Sr-Ta

Non-Equilibrium Effects Driven by Rarefaction in Shock Wave and Boundary Layer Interactions

Creating ZnCr2S4 and ZnCr2S4/rGO for Energy Storage

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.