• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, July 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Impact of climate change on microbial biodiversity

Bioengineer by Bioengineer
December 21, 2016
in Science News
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Dr Jianjun Wang

The scientists discovered that climate change affects biodiversity most strongly in the most natural environments, as well as the most nutrient enriched environments. This means that these extremes are most susceptible to future changes in temperatures.

The results are just published in the highly regarded journal Nature Communications.

We still know fairly little about the specific impacts of climate change and human activity, such as nutrient enrichment of waterways, on broad geographical scales. Researchers from the Department of Geosciences and Geography at the University of Helsinki, the Finnish Environment Institute, and the Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences have studied hundreds of microcosms in mountainous regions with the aid of natural temperature gradients in the studied areas, while modifying the enrichment level in field tests.

The results indicate that the bacteria in elevated tropical areas are similar to e.g. those in arctic areas. As a result of changes in temperature and aquatic enrichment, significant alterations occur in the microcosms, and as the enrichment increases, biodiversity reduces, says Associate Professor Janne Soininen.

Species adapted to austere conditions in danger

Experiments in mountainous regions indicated that differentiating between the effects of temperature variations and aquatic nutrient enrichment can help us understand the possible effects of climate change in different environments. The typically austere, i.e. nutrient-poor, waters in the north, for example, are extremely susceptible to temperature variations, and as the climate warms up, species that have adapted to the cold will decline. The only good news is that biodiversity may improve at first, as the climate warms up, as species that thrive in warmer areas increase, until biodiversity again starts to decline when the temperature continues to rise.

Another significant finding in this research was that, like plants and animals, different species of bacteria clearly live at different levels of elevation, and the bacteria in high mountain areas in the tropics are similar to the bacteria in arctic areas, due to the similar cold climate.

###

More details:

Associate Professor Janne Soininen
Department of Geosciences and Geography, University of Helsinki
[email protected]
050-3185245

Researcher Jianjun Wang
Department of Geosciences and Geography, University of Helsinki
[email protected]

Video: Climate and nutrients affect biodiversity of bacteria https://youtu.be/7XyZdG7z84o

Media Contact

Riitta-Leena Inki
[email protected]
358-504-485-770
@helsinkiuni

http://www.helsinki.fi/university/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Evolving Deaminase Hotspots for Precise Cytosine Editing

July 7, 2025
HIV-1 Nuclear Entry Hinges on Capsid and Pore

HIV-1 Nuclear Entry Hinges on Capsid and Pore

July 7, 2025

Soil Dryness: Timing and Impact on Photosynthesis

July 7, 2025

Linking Body, Behavior to Atherogenic Risk Ratio

July 5, 2025
Please login to join discussion

POPULAR NEWS

  • Zheng-Rong Lu

    Pancreatic Cancer Vaccines Eradicate Disease in Preclinical Studies

    75 shares
    Share 30 Tweet 19
  • Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    72 shares
    Share 29 Tweet 18
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    69 shares
    Share 28 Tweet 17
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evolving Deaminase Hotspots for Precise Cytosine Editing

HIV-1 Nuclear Entry Hinges on Capsid and Pore

Soil Dryness: Timing and Impact on Photosynthesis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.