• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, July 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Immune system protein may defend against deadly intestinal disease in babies

Bioengineer by Bioengineer
June 17, 2021
in Health
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Findings may lead to new therapies for necrotizing enterocolitis

IMAGE

Credit: Matt Miller/Washington University

The intestinal disease necrotizing enterocolitis is a leading cause of death among premature infants born in the U.S. and across the globe. Characterized by excessive inflammation that can cause tissue decay in the bowels, the disease provides a pathway for infectious and deadly bacteria to enter the bloodstream.

Despite four decades of research, effective treatments remain elusive, and mortality rates in babies who develop the disease have remained essentially unchanged, hovering at about 30%.

Now, a study led by researchers at Washington University School of Medicine in St. Louis has identified, in mice, a protein in the immune system that may protect babies from necrotizing enterocolitis (NEC) and lead to the development of new treatments.

The findings are published online June 15 in Cell Reports Medicine.

“Necrotizing enterocolitis is a serious, fast-acting condition that can lead to death within hours,” said the study’s senior author, Misty Good, MD, an assistant professor of pediatrics in the Division of Newborn Medicine. “We don’t know why NEC happens, and we can try to treat it with antibiotics and surgical removal of the dead tissue; however, in severe cases, many babies will still die. No treatments stop the disease from progressing, but our hope is that the protein we’ve identified will change that.”

The scientists focused on Interleukin-22 (IL-22), a protein that regulates immune responses and helps maintain a healthy gut microbiome in adults.

Over the years, research has suggested that IL-22 has a critical role in adult gastrointestinal diseases. Consequently, potential treatments involving IL-22 are being studied in COVID-19 illness, alcohol-induced liver disease, and graft-versus-host disease that develops after organ or bone marrow transplants. However, IL-22’s role in newborns’ intestines has been unclear.

To better understand the protein’s role, the researchers created a mouse model to examine IL-22 signaling and production in healthy intestines and in intestines damaged by NEC. They analyzed IL-22 levels before and after birth and into adulthood, which for mice begins when they are weaned, at about 28 days old. In both the healthy and diseased intestines, the researchers documented low postnatal IL-22 production up until day 21, when production skyrocketed for the mice and continued into adulthood.

The researchers also studied tissue samples from preemies who did and did not develop NEC. The scientists found low levels of IL-22 in all of the intestinal samples. And in the babies who had developed NEC, an appropriate immune response had not been mounted in the intestines.

“Immune cells in the neonatal intestine have shown an inability to produce adequate amounts of IL-22 to control the progression of NEC,” said Good, who treats patients at St. Louis Children’s Hospital and is also co-program director of the university’s Neonatal-Perinatal Medicine Fellowship. As a member of the scientific advisory council of the Necrotizing Enterocolitis Society, Good has led an effort involving seven medical centers that have developed a large biorepository of samples from infants affected by NEC.

Good surmised that immature intestines are associated with a lack of IL-22 production, a theory strengthened by the fact that premature infants weighing less than 3 pounds 5 ounces are most at risk for NEC. Typically, the more premature a baby is, the lower the baby’s weight and the more undeveloped a baby’s gastrointestinal immune system is. Harmful bacteria can get cross the gut barrier and activate the immune system. And because the immune system of preemies isn’t fully developed, it leads to an exaggerated inflammatory response that can lead to tissue death.

The researchers’ findings of low levels of IL-22 in neonatal tissues led to their next step: injecting the mice with IL-22. The protein aids in controlling inflammation while promoting regeneration of tightly packed cells lining the intestine. IL-22 can help strengthen the intestinal walls, creating a barrier in the gut that allows for nutrient absorption while preventing toxic or otherwise hostile microorganisms from seeping into the bloodstream.

“Interestingly, our work demonstrated that treatment with IL-22, in mice, protects the newborn intestine against damage caused by NEC,” Good said. “Our study represents a substantial advance in understanding the role of IL-22 in early life and sets the stage for new ways to treat NEC in the future.”

###

Media Contact
Diane Duke Williams
[email protected]

Original Source

https://medicine.wustl.edu/news/immune-system-protein-may-defend-against-deadly-intestinal-disease-in-babies/

Related Journal Article

http://dx.doi.org/10.1016/j.xcrm.2021.100320

Tags: Critical Care/Emergency MedicineInternal MedicineMedicine/HealthPediatricsSurgery
Share13Tweet8Share2ShareShareShare2

Related Posts

Single-Cell Atlas Links Chemokines to Type 2 Diabetes

July 20, 2025
blank

AI Diagnoses Structural Heart Disease via ECG

July 17, 2025

Functional Regimes Shape Soil Microbiome Response

July 17, 2025

Stealth Adaptations in Large Ichthyosaur Flippers

July 17, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    56 shares
    Share 22 Tweet 14
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14
  • Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    73 shares
    Share 29 Tweet 18
  • IIT Researchers Unveil Flying Humanoid Robot: A Breakthrough in Robotics

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.