• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, January 15, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Immunology

Some immune cells defend only one organ

Bioengineer by Bioengineer
April 18, 2014
in Immunology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists have uncovered a new way the immune system may fight cancers and viral infections. The finding could aid efforts to use immune cells to treat illness.

Washington University School of Medicine

The Washington University School of Medicine Center for Advanced Medicine St. Louis, Missouri, USA

The research, in mice, suggests that some organs have the immunological equivalent of “neighborhood police” – specialized squads of defenders that patrol only one area, a single organ, instead of an entire city, the body.

Scientists at Washington University School of Medicine in St. Louis have shown that the liver, skin and uterus each has dedicated immune cells, which they call tissue-resident natural killer cells. Other organs may have similar arrangements.

Their study, published in eLife, disproves the long-held assumption that all natural killer cells roam the body to provide the first line of defense against cancers and viruses.

“If, for example, we can use specialized medications to activate only these organ-specific cells, they could provide powerful and selective weapons against infections and tumors in the organs where they reside,” said senior investigator Wayne M. Yokoyama, MD, the Sam and Audrey Loew Levin Professor of Medicine. “Cells that only defend one organ may be much better equipped than the roaming immune cells to mount an attack and limit collateral damage to healthy tissue.”

Scientists have thought that mature natural killer cells circulate through the body looking for viruses and cancers. When these immune cells identify a threat, they attack. Scientists also thought that natural killer cells that stayed in the liver instead of circulating were immature or inactive and eventually would become like other natural killer cells, leaving the liver and moving through the body.

In the new study, lead author Dorothy K. Sojka, PhD, a postdoctoral research fellow in Yokoyama’s laboratory, showed that some natural killer cells never leave the liver. She identified additional tissue-resident natural killer cells in the skin and uterus.

Sojka also experimented with transcription factors — molecular switches that turn a number of genes on and off. Among other results, she found that disabling one of these switches could prevent circulating natural killer cells from developing without affecting tissue-resident natural killer cells in the liver, skin and uterus. Disabling another transcription factor wiped out the liver and skin tissue-resident natural killer cells while having little effect on the circulating and uterus tissue-resident natural killer cells.

“If one group of cells absolutely needs a specific transcription factor to exist, while another group of cells doesn’t care if that factor is gone, that strongly suggests the two groups of cells use distinct developmental pathways and are therefore different,” Sojka said.

Her results point to at least four types of natural killer cells rather than just the one major type long recognized by immunologists. She is looking for groups of resident natural killer cells in other organs and investigating the origins and functions of those she already has identified.

“Conceptually, this is very different, a significant change in our thinking about how a very important part of the immune system works,” said Yokoyama, a Howard Hughes Medical Institute Investigator.

Story Source:

The above story is based on materials provided by Washington University in St. Louis, Michael C. Purdy.

Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

NIH scientists identify nutrient that helps prevent bacterial infection

January 15, 2021
IMAGE

SARS-CoV-2 antibody test helps select donor blood samples for therapeutic use

January 14, 2021

Scientists identify “immune cop” that detects SARS-CoV-2

January 12, 2021

Disposable helmet retains cough droplets, minimizes transmission to dentists

January 12, 2021
Next Post
blank

PhD Studentship on Nanotechnology for Directing Soft-Tissue Repair

blank

Researchers offer new views of body’s insulating material

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    53 shares
    Share 21 Tweet 13
  • Blood pressure drug may be key to increasing lifespan, new study shows

    44 shares
    Share 18 Tweet 11
  • New drug form may help treat osteoporosis, calcium-related disorders

    38 shares
    Share 15 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

GeneticsEcology/EnvironmentCell BiologyMaterialsPublic HealthInfectious/Emerging DiseasesMedicine/HealthcancerChemistry/Physics/Materials SciencesTechnology/Engineering/Computer ScienceClimate ChangeBiology

Recent Posts

  • Nanodiamonds feel the heat
  • Special interests can be assets for youth with autism
  • Controlling chemical catalysts with sculpted light
  • New study compiles four years of corn loss data from 26 states and Ontario, Canada
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In