• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Image generation AI for predicting the deformation of splashing drops

Bioengineer by Bioengineer
April 19, 2023
in Chemistry
Reading Time: 3 mins read
0
Examples of post-impact image sequences generated by the trained encoder–decoder and the actual binarized post-impact image sequences
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The impact of a drop on a solid surface is an important phenomenon that has various implications and applications. Especially when the drop splashes, it can cause soil erosion, dispersal of plant pathogens, deterioration of printing and paint qualities, among others. Therefore, it is necessary to predict the deformation of a splashing drop to minimize the adverse effects. However, the multiphase nature causes complications in the prediction. To tackle this problem, several drop-impact studies have adopted artificial intelligence (AI) models and have shown excellent performances. However, the models developed in these studies use physical parameters as inputs and outputs, thus difficult to capture the deformation of the impacting drop.

Examples of post-impact image sequences generated by the trained encoder–decoder and the actual binarized post-impact image sequences

Credit: Jingzu Yee, Daichi Igarashi, Shun Miyatake and Yoshiyuki Tagawa,
Tokyo University of Agriculture and Technology

The impact of a drop on a solid surface is an important phenomenon that has various implications and applications. Especially when the drop splashes, it can cause soil erosion, dispersal of plant pathogens, deterioration of printing and paint qualities, among others. Therefore, it is necessary to predict the deformation of a splashing drop to minimize the adverse effects. However, the multiphase nature causes complications in the prediction. To tackle this problem, several drop-impact studies have adopted artificial intelligence (AI) models and have shown excellent performances. However, the models developed in these studies use physical parameters as inputs and outputs, thus difficult to capture the deformation of the impacting drop.

At the Tokyo University of Agriculture and Technology, a research team from the Department of Mechanical Systems Engineering proposed a computer-vision strategy and successfully predicted the deformation using image data. The research team led by Prof Yoshiyuki Tagawa, which includes Jingzu Yee (postdoctoral researcher), Daichi Igarashi (1st-year master’s student) and Shun Miyatake (4th-year undergraduate student), has got their findings published in Machine Learning: Science and Technology on April 6th, 2023.

In their research, the architecture of an encoder–decoder, which can take images as input and output, has been adopted to develop an image-based AI model to predict the drop deformation. By taking a pre-impact image sequence as the input, the trained encoder–decoder has successfully generated image sequence that shows the deformation of a drop during the impact, as the output. Remarkably, the generated image sequences are very similar to the actual image sequences captured during the experiment. The quantitative evaluation of the generated image sequences showed that in each frame of these generated image sequences, the spreading diameter of the drop was found to be in good agreement with that of the actual image sequences. Moreover, there was also a high accuracy in splashing/non-splashing prediction. These findings demonstrate the ability of the trained encoder–decoder to generate image sequences that can accurately represent the deformation of a drop during the impact.

“The approach proposed by this research offers a faster and more cost-effective alternative to experimental and numerical studies,” said Yoshiyuki Tagawa, professor at the Tokyo University of Agriculture and Technology. “This achievement is important in understanding and minimizing the adverse effects of splashing. In addition, it has shown the great potential of using AI and machine learning for scientific studies.”

 

### 

 

About Tokyo University of Agriculture and Technology (TUAT):

TUAT is a distinguished university in Japan dedicated to science and technology. TUAT focuses on agriculture and engineering that form the foundation of industry, and promotes education and research fields that incorporate them. Boasting a history of over 140 years since our founding in 1874, TUAT continues to boldly take on new challenges and steadily promote fields. With high ethics, TUAT fulfills social responsibility in the capacity of transmitting science and technology information towards the construction of a sustainable society where both human beings and nature can thrive in a symbiotic relationship. For more information, please visit http://www.tuat.ac.jp/en/.



Journal

Machine Learning Science and Technology

DOI

10.1088/2632-2153/acc727

Article Title

Prediction of the morphological evolution of a splashing drop using an encoder-decoder

Article Publication Date

6-Apr-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Palladium Filters Pave the Way for More Affordable, Efficient Hydrogen Fuel Production

October 1, 2025
Revolutionary Organic Molecule Poised to Transform Solar Energy Harvesting

Revolutionary Organic Molecule Poised to Transform Solar Energy Harvesting

October 1, 2025

Innovative Biochar Technology Offers Breakthrough in Soil Remediation and Crop Protection

October 1, 2025

CATNIP Tool Expands Access to Sustainable Chemistry Through Data-Driven Innovation

October 1, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    91 shares
    Share 36 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    78 shares
    Share 31 Tweet 20
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Prolonged U.S. Residency Linked to Rising Heart Disease Risk Among Immigrants

Virtual Reality: A Promising Tool for Alleviating Anxiety in Patients Facing Interventional Cardiovascular Procedures

New Insights into Human Cilia Shed Light on Childhood Diseases

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.