• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, May 17, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Illuminating perovskite photophysics

Bioengineer by Bioengineer
April 20, 2022
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A detailed view of how electrical charges behave inside perovskites could guide efforts to improve the performance of next-generation solar cells based on these materials, KAUST research has shown.

Illuminating perovskite photophysics

Credit: © 2022 KAUST; Anastasia Serin.

A detailed view of how electrical charges behave inside perovskites could guide efforts to improve the performance of next-generation solar cells based on these materials, KAUST research has shown.

When light hits a perovskite, it excites negatively charged electrons and leaves behind positively-charged “holes” within the material’s crystalline structure. These electrons and holes can then move through the perovskite to generate an electrical current. But the charge carriers could also recombine instead, which wastes the energy they carry.

“The efficiency of perovskite solar cells has been greatly improved in the past decade, but fundamental research on their photophysics is relatively backward,” says Ming-Cong Wang at the KAUST Solar Center, part of the team behind the work. “One of the things that is not clear is how charge carriers behave before recombining.”

Some of the ions that make up the perovskite’s crystal lattice can help to localize electrons and holes in different regions, which prevents them from recombining and prolongs their lives. However, this localization also tends to make the charge carriers less mobile, which may adversely affect the solar cell’s performance. Understanding such effects could help researchers to fine-tune the composition of perovskites and boost their ability to generate electricity from sunlight.

The team studied two different aspects of charge-carrier behavior in thin films of a promising perovskite known as CsFAMA (a cesium-containing triple-cation mixed halide perovskite). First, they used a series of brief laser pulses to excite the charge carriers and then examine them just a few picoseconds (trillionths of a second) later. They found that as the density of charge carriers increases, it linearly narrows the energy gap that electrons need to vault when they are excited by incoming light. This is different from the behavior of conventional semiconductors, says Wang.

Then the team used a form of high-intensity microwaves, called terahertz radiation, to study how the charge carriers moved around. This showed that as the density of charge carriers increases, they are more likely to stick in a particular location. “Charge carriers are more localized at higher densities,” says Frédéric Laquai, who led the team.

The researchers think that both of these observations have the same root cause. When light hits the perovskite, it can cause small rapid distortions in the lattice of ions that affect the charge carriers’ behavior. Other researchers have very recently observed such lattice fluctuations in perovskites as well, lending support to the findings.



Journal

Nature Communications

DOI

10.1038/s41467-022-28532-0

Method of Research

Experimental study

Article Title

Photo-induced enhancement of lattice fluctuations in metal-halide perovskites

Article Publication Date

23-Feb-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

Pregnancy Screening WVU

New tool developed by WVU researchers makes it easier to identify pregnant patients with eating disorders

May 17, 2022
Multiple growth forms of C. Albicans

Friendly fungi announce themselves to their hosts

May 17, 2022

Infrared imaging to measure glymphatic function

May 17, 2022

Scientists see signs of traumatic brain injury in headbutting muskox

May 17, 2022

POPULAR NEWS

  • Weybourne Atmospheric Observatory

    Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    42 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

WeaponryWeather/StormsViolence/CriminalsUrbanizationVehiclesZoology/Veterinary ScienceUniversity of WashingtonVaccineVaccinesUrogenital SystemVirusVirology

Recent Posts

  • mRNA vaccines like Pfizer and Moderna fare better against COVID-19 variants of concern
  • Robert Buderi’s History of Kendall Square, “the most innovative square mile on the planet”
  • How to build an ‘explainable AI’ framework to speed up the innovation process
  • New tool developed by WVU researchers makes it easier to identify pregnant patients with eating disorders
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....