• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Illinois researchers develop new framework for nanoantenna light absorption

Bioengineer by Bioengineer
September 23, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign

Harnessing light’s energy into nanoscale volumes requires novel engineering approaches to overcome a fundamental barrier known as the “diffraction limit.” However, University of Illinois researchers have breached this barrier by developing nanoantennas that pack the energy captured from light sources, such as LEDs, into particles with nanometer-scale diameters, making it possible to detect individual biomolecules, catalyze chemical reactions, and generate photons with desirable properties for quantum computing.

The results, which have a broad array of applications that may include better cancer diagnostic tools, were recently published in the Nano Letters, a prestigious peer-reviewed journal published by the American Chemical Society in a paper entitled “Microcavity-Mediated Spectrally Tunable Amplification of Absorption in Plasmonic Nanoantennas,” The research was funded by the National Science Foundation.

To create a device capable of overcoming the diffraction limit, graduate student Qinglan Huang and her adviser, Holonyak Lab Director Brian T. Cunningham, a Donald Biggar Willett Professor in Engineering, coupled photonic crystals with a plasmonic nanoantenna, an innovative approach in the field. The photonic crystals serve as light receivers and focus the energy into an electromagnetic field that is hundreds of times greater than that received from the original light source, such as an LED or laser. The nanoantennas, when “tuned” to the same wavelength, absorb the energy from the electromagnetic field and concentrate the energy into a smaller volume that is yet another two orders of magnitude of greater intensity. The energy feedback between the photonic crystal and the nanoantenna, called “resonant hybrid coupling” can be observed by its effects on the reflected and transmitted light spectrum.

“To get cooperative coupling between two things is exciting because it’s never been done,” said Huang. “It’s a general-purpose concept that we have experimentally demonstrated for the first time.”

To achieve this, the team carefully controlled the density of the nanoantennas to maximize their energy collection efficiency. They also developed a method that allowed the nanoantennas to be distributed uniformly across the photonic crystal surface and tuned the photonic crystal’s optical resonating wavelength to match the absorption wavelength of the nanoantennas.

In addition to changing how researchers can work with light, this new coupling method has the potential to change how and when cancer is diagnosed. One application is to use a gold nanoparticle, not much larger than biomolecules such as DNA, as the nanoantenna. In this case, the feedback provides a way to identify a biomarker unique to a certain type of cancer cell, and the group now linking the resonant hybrid coupling technique to novel biochemistry methods to detect cancer-specific RNA and DNA molecules with single-molecule precision. Cunningham, and other members of the Nanosensor Group will soon publish another paper that focuses specifically on the discovery’s applications in regards to cancer diagnostics.

“Nano Letters is a very tough journal to get into,” said Cunningham. “But the novel physics in this research and the potential for broad applications are what make this research stand out. The next steps of this research involve delving into the potential applications of this new process.

###

Media Contact
Brian Cunningham
[email protected]

Original Source

https://mntl.illinois.edu/news/article/34395

Related Journal Article

http://dx.doi.org/10.1021/acs.nanolett.9b01764

Tags: ElectromagneticsNanotechnology/MicromachinesOpticsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Scientists Pioneer Innovative Method for Precise Experimental Measurement of the Unruh Effect

September 11, 2025
Machine Embroidery Mimics Skin Tension Lines to Create Mass-Customizable Wearable Textiles

Machine Embroidery Mimics Skin Tension Lines to Create Mass-Customizable Wearable Textiles

September 11, 2025

Perseverance Rover Reveals New Insights into Ancient Martian Chemistry

September 10, 2025

Unveiling the True Mechanisms of Catalysis in Metallic Nanocatalysts

September 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    63 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Discovering a Female-Specific Mechanism Regulating Energy Expenditure in Brown Fat

Dr. Michael Welsh Honored with Lasker Award for Groundbreaking Cystic Fibrosis Research

Mass General Brigham’s Kraft Center Reveals Winner and Finalists for 2025 Kraft Prize in Community Health Innovation

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.