• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

iCeMS makes highly conductive antiperovskites with soft anion lattices

Bioengineer by Bioengineer
January 12, 2021
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

An atomic switch is bringing us closer to highly effective solid-state batteries for electric vehicles

IMAGE

Credit: Mindy Takamiya/Kyoto University iCeMS

A new structural arrangement of atoms shows promise for developing safer batteries made with solid materials. Scientists at Kyoto University’s Institute for Integrated Cell-Material Sciences (iCeMS) designed a new type of ‘antiperovskite’ that could help efforts to replace the flammable organic electrolytes currently used in lithium ion batteries. Their findings were described in the journal Nature Communications.

Perovskite compounds are being tested and used in a wide range of technologies due to their excellent ability to conduct electricity, among other properties. They can be made from a large combination of atoms with the formula ABX3, where A and B are positively charged atoms and X is a negatively charged one.

Recently, scientists have been tinkering with compounds called antiperovskites. These flip the formula, combining two types of negatively charged ‘anions’ and one type of positively charged ‘cation’. They also have numerous intriguing properties, including superconductivity and , in contrast to most materials, contraction upon heating.

Lithium- and sodium-rich antiperovskites, such as Li3OCl and Na3OCl, have been attracting much attention due to their high ionic conductivity and alkali metal concentration, making them promising candidates to replace liquid electrolytes used in lithium ion batteries. “But achieving a comparable lithium ion conductivity in solid materials has been challenging,” explains iCeMS solid-state chemist Hiroshi Kageyama, who led the study.

Kageyama and his team synthesized a new family of lithium- and sodium-rich antiperovskites that begins to overcome this issue. Instead of ‘hard’ oxygen and halogen anions, their antiperovskites contain a hydrogen anion, called a hydride, and ‘soft’ chalcogen anions like sulphur.

The scientists conducted a wide range of theoretical and experimental investigations on these antiperovskites, and found that the soft anion lattice provides an ideal conduction path for lithium and sodium ions, which can be further enhanced by chemical substitutions.

The advantages of this new family of antiperovskites appear to be due, in part, to the hydride’s ability to change its size and expand its compositional space. This helps stabilize the compound’s structure. Additionally, its anomalous vibrational mode assists ionic conductivity.

“There is still much room for improvement by further experimentation with chemical substitutions,” says Kageyama. “This could eventually lead to solid-state electrolytes in all-solid-state metal-ion batteries for high performance electrical vehicles.”

###

DOI: 10.1038/s41467-020-20370-2

About Kyoto University’s Institute for Integrated Cell-Material Sciences (iCeMS):

At iCeMS, our mission is to explore the secrets of life by creating compounds to control cells, and further down the road to create life-inspired materials.

https://www.icems.kyoto-u.ac.jp/

For more information, contact:

I. Mindy Takamiya/Mari Toyama

[email protected]

Media Contact
Mindy Takamiya
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-20370-2

Tags: Chemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)MaterialsNanotechnology/Micromachines
Share12Tweet8Share2ShareShareShare2

Related Posts

Eliminating Yellow Stains on Fabric Using Blue Light: A Scientific Breakthrough

Eliminating Yellow Stains on Fabric Using Blue Light: A Scientific Breakthrough

September 2, 2025
blank

Unraveling the Physics Behind Universal Unusual Magnetoresistance

September 2, 2025

Quantum researchers capture real-time magnetic flipping at the core of a single atom

September 2, 2025

Magnetic Activation Enables Remote Control of Synthetic Cells

September 2, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Needlestick Injury Rates in Nurses and Students in Pakistan

    113 shares
    Share 45 Tweet 28

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

How Nanoparticles Are Revolutionizing Therapeutic Vaccines for HPV-Related Tumors

Plant-Based Nutrient Enhances Immune Cells’ Cancer-Fighting Abilities

Altmetric Introduces Sentiment Analysis to Enhance Social Media Tracking

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.