• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Ice-proof coating for big structures relies on a ‘beautiful demonstration of mechanics’

Bioengineer by Bioengineer
April 25, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Joseph Xu/Michigan Engineering, Communications & Marketing, University of Michigan

ANN ARBOR–A new class of coatings that sheds ice effortlessly from even large surfaces has moved researchers closer to their decades-long goal of ice-proofing cargo ships, airplanes, power lines and other large structures.

The spray-on coatings, developed at the University of Michigan, cause ice to fall away from structures–regardless of their size–with just the force of a light breeze, or often the weight of the ice itself. A paper on the research is published in Science.

In a test on a mock power line, the coating shed ice immediately.

The researchers overcame a major limitation of previous ice-repellent coatings–while they worked well on small areas, researchers found in field testing that they didn’t shed ice on very large surfaces as effectively as they had hoped. That’s an issue, since ice tends to cause the biggest problems on the biggest surfaces–sapping efficiency, jeopardizing safety and necessitating costly removal.

They cleared this hurdle with a “beautiful demonstration of mechanics.” Anish Tuteja, an associate professor of materials science and engineering, described how he and his colleagues turned to a property that isn’t well-known in icing research.

“For decades, coating research has focused on lowering adhesion strength–the force per unit area required to tear a sheet of ice from a surface,” Tuteja said. “The problem with this strategy is that the larger the sheet of ice, the more force is required. We found that we were bumping up against the limits of low adhesion strength, and our coatings became ineffective once the surface area got large enough.”

The new coatings solve the problem by introducing a second strategy: low interfacial toughness, abbreviated LIT. Surfaces with low interfacial toughness encourage cracks to form between ice and the surface. And unlike breaking an ice sheet’s surface adhesion, which requires tearing the entire sheet free, a crack only breaks the surface free along its leading edge. Once that crack starts, it can quickly spread across the entire iced surface, regardless of its size.

“Imagine pulling a rug across a floor,” said Michael Thouless, the Janine Johnson Weins Professor of Engineering in mechanical engineering. “The larger the rug, the harder it is to move. You are resisted by the strength of the entire interface between the rug and floor. The frictional force is analogous to the interfacial strength.

“But now imagine there’s a wrinkle in that rug. It’s easy to keep pushing that wrinkle across the rug, regardless of how big the rug is. The resistance to propagating the wrinkle is analogous to the interfacial toughness that resists the propagation of a crack.”

Thouless said the concept of interfacial toughness is well known in the field of fracture mechanics, where it underpins products like laminated surfaces and adhesive-based aircraft joints. But until now, it hadn’t been applied in ice mitigation. The advance came when Thouless learned of Tuteja’s previous work and saw an opportunity.

“Traditionally, fracture mechanics researchers only care about interfacial toughness, and ice mitigation researchers often only care about interfacial strength,” Thouless said. “But both parameters are important for understanding adhesion.

“I pointed out to Anish that if he were to test increasing lengths of ice, he would find the failure load would rise while interfacial strength was important, but then plateau once toughness became important. Anish and his students tried the experiments and ended up with a really beautiful demonstration of the mechanics, and a new concept for ice adhesion.”

To test the idea, Tuteja’s team used a technique he honed during previous coating research. By mapping out the properties of a vast library of substances and adding interfacial toughness as well as adhesion strength to the equation, they were able to mathematically predict the properties of a coating without the need to physically test each one. This enabled them to concoct a wide variety of combinations, each with a specifically tailored balance between interfacial toughness and adhesion strength.

They tested a variety of coatings on large surfaces–a rigid aluminum sheet approximately 3 feet square, and a flexible aluminum piece approximately 1 inch wide and 3 feet long, to mimic a power line. On every surface, ice fell off immediately due to its own weight. It stuck fast, however, to the control surfaces, which were identical in size–one was uncoated and another was coated with an earlier icephobic coating.

The team’s next step is to improve its durability of the LIT coatings.

###

The paper is titled “Low Interfacial Toughness Materials for Effective large-Scale De-Icing.” In addition to Tuteja and Thouless, the team included U-M macromolecular science and engineering graduate researcher Abhishek Dhyani and former U-M materials science and engineering Ph.D. student Kevin Golovin. The research was funded by the Office of Naval Research, the Air Force Office of Scientific Research, and the National Science Foundation and the Nanomanufacturing program (grant #1351412).

Anish Tuteja

Michael Thouless

Media Contact
Nicole Moore
[email protected]

Tags: Chemistry/Physics/Materials SciencesMaterialsTechnology/Engineering/Computer Science
Share13Tweet8Share2ShareShareShare2

Related Posts

Global Call to Advance Robust and Reproducible Polyphenol Research to Launch Next October in Malta at Polyphenols Applications World Congress and Iprona

September 29, 2025
blank

Physicists Narrow the Search for Elusive Dark Matter

September 29, 2025

Lab Breakthrough in Mimicking Star Formation Wins Prestigious John Dawson Award

September 29, 2025

Scientists Achieve Chiral State Switching in Complex Many-Body Systems

September 29, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    86 shares
    Share 34 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    73 shares
    Share 29 Tweet 18
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    58 shares
    Share 23 Tweet 15
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Xenopax Shows Promise in Steroid-Refractory GvHD Treatment

Electric Space Heating and Appliances Slash Residential Energy Use in the U.S.

Global Call to Advance Robust and Reproducible Polyphenol Research to Launch Next October in Malta at Polyphenols Applications World Congress and Iprona

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 61 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.