• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Hydrogel paves way for biomedical breakthrough

Bioengineer by Bioengineer
August 4, 2020
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Plasma technology could improve viability of implants

IMAGE

Credit: University of Sydney

Published in Advanced Functional Materials, a University of Sydney team of biomedical engineers has developed a plasma technology to robustly attach hydrogels ­­- a jelly-like substance which is structurally similar to soft tissue in the human body – to polymeric materials, allowing manufactured devices to better interact with surrounding tissue.

To function optimally in the body, a manufactured implant – whether it be an artificial hip, a fabricated spinal disc or engineered tissue – must bond and interact with appropriate surrounding tissues and living cells.

When that doesn’t happen an implant may fail or, worse still, be rejected by the body. Worldwide, implant failures and rejections are a significant cost to health systems, placing large financial and health burdens on patients.

The team, which was led by School of Biomedical Engineering, Dr Behnam Akhavan and Professor Marcela Bilek, successfully combined hydrogels including those made from silk with Teflon and polystyrene polymers.

“Despite being similar to the natural tissue of the body; in medical science hydrogels are notoriously difficult to work with as they are inherently weak and structurally unstable. They do not easily attach to solids which means they often cannot be used in mechanically demanding applications such as in cartilage and bone tissue engineering,” said Dr Akhavan.

Hydrogels are highly attractive for tissue engineering because of their functional and structural similarity to human body soft tissue,” said Biomedical Engineering PhD student Ms Rashi Walia, who carried out the research in collaboration with the University of Sydney’s School of Physics and School of Chemical and Biomolecular Engineering, as well as Tufts University in Massachusetts, USA.

“Our group’s unique plasma process, recently reported in ACS Applied Materials and Interfaces, enables us to activate all surfaces of complex, porous structures, such as scaffolds, to covalently attach biomolecules and hydrogels”, said ARC Laureate and Biomedical Engineering academic, Professor Marcela Bilek.

“These advances enable the creation of mechanically robust complex-shaped polymeric scaffolds infused with hydrogel, bringing us a step closer to mimicking the characteristics of natural tissues within the body,” said Professor Bilek.

“The plasma process is carried out in a single step, generates zero waste, and does not require additional chemicals that can be harmful to the environment.”

Biomedical devices, organ implants, biosensors and tissue engineering scaffolds that are set to benefit from the new hydrogel technology.

“There are several scenarios in which this technology can be used. The gel could be loaded with a drug to release slowly over time, or it can be used to mimic structures such as bone-cartilage,” said Dr Akhavan.

“These materials are also excellent candidates for applications such as lab-on-a-chip platforms, bioreactors that mimic organs, and biomimetic constructs for tissue repair as well as antifouling coatings for surfaces submerged in marine environments.”

The research tested the material using biomolecules found in the body, which demonstrated a positive cellular response.

Dr Akhavan and the team will be progressing their area of research and will further develop the technology to combine hydrogels with non-polymeric solid materials, such as ceramics and metals.

###

DISCLOSURE:

The research was funded by Australian Research Council and University of Sydney grants.

Media Contact
Luisa Low
[email protected]

Related Journal Article

http://dx.doi.org/10.1002/adfm.202004599

Tags: Biomedical/Environmental/Chemical EngineeringMedicine/HealthOrthopedic MedicineRehabilitation/Prosthetics/Plastic SurgerySports MedicineSports/RecreationSurgeryTransplantation
Share13Tweet8Share2ShareShareShare2

Related Posts

Nursing Perspectives on Outdoor Walks in Dementia Care

September 5, 2025
blank

Five University of Groningen Scientists Awarded ERC Starting Grants

September 5, 2025

Adaptive Visible-Infrared Camouflage Enables Wide-Spectrum Radiation Control for Extreme Temperature Environments

September 5, 2025

Breakthrough Unleashes the Power of ‘Miracle Material’ for Next-Generation Electronics

September 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nursing Perspectives on Outdoor Walks in Dementia Care

Five University of Groningen Scientists Awarded ERC Starting Grants

Adaptive Visible-Infrared Camouflage Enables Wide-Spectrum Radiation Control for Extreme Temperature Environments

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.