• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, March 28, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Humanity’s quest to discover the origins of life in the universe

Bioengineer by Bioengineer
March 4, 2023
in Chemistry
Reading Time: 5 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

“We are living in an extraordinary moment in history,” says Didier Queloz, who directs ETH Zurich’s Centre for Origin and Prevalence of Life and the Leverhulme Centre for Life in the Universe at Cambridge. While still a doctoral student Queloz was the first to discover an exoplanet – a planet orbiting a solar-type star outside of Earth’s solar system. A discovery for which he would later receive a Nobel Prize in physics. Within a generation, scientists have now discovered more than 5,000 exoplanets and predict the potential existence of trillions more in the Milky Way galaxy alone. Each discovery inspires more questions than answers about how and why life emerged on Earth and whether it exists elsewhere in the universe. Technological advancements, such as the James Webb Space Telescope and interplanetary missions to Mars, accelerate access to an overwhelming volume of new observations and data, such that it will take the convergence of a multidisciplinary network to understand the emergence of life in the universe.

Didier Queloz

Credit: ETH Zurich / Marco Rosasco Photography

“We are living in an extraordinary moment in history,” says Didier Queloz, who directs ETH Zurich’s Centre for Origin and Prevalence of Life and the Leverhulme Centre for Life in the Universe at Cambridge. While still a doctoral student Queloz was the first to discover an exoplanet – a planet orbiting a solar-type star outside of Earth’s solar system. A discovery for which he would later receive a Nobel Prize in physics. Within a generation, scientists have now discovered more than 5,000 exoplanets and predict the potential existence of trillions more in the Milky Way galaxy alone. Each discovery inspires more questions than answers about how and why life emerged on Earth and whether it exists elsewhere in the universe. Technological advancements, such as the James Webb Space Telescope and interplanetary missions to Mars, accelerate access to an overwhelming volume of new observations and data, such that it will take the convergence of a multidisciplinary network to understand the emergence of life in the universe.

ETH Zurich, Cambridge, Harvard, and Chicago found the “Origins Federation”

Joining forces with chemist and fellow Nobel Laureate, Jack Szostak and astronomer, Dimitar Sasselov, Didier Queloz announced the founding of a new “Origins Federation” during the American Association for the Advancement of Science (AAAS). While a fictional interstellar federation might immediately spring to mind, this international alliance brings together the expertise of researchers working in the origins of life centers and initiatives at ETH Zurich, University of Cambridge, Harvard University, and The University of Chicago.

Together, scientists will explore the chemical and physical processes of living organisms and environmental conditions hospitable to supporting life on other planets. “The Origins Federation,” Queloz commented, “builds upon a long-standing collegial relationship strengthened through a shared collaboration in a recently completed project with the Simons Foundation.”

What humanity could learn from extra-terrestrial biosignatures

Such collaborations support the work of researchers like Zoology professor, Emily Mitchell. Mitchell, who works with Queloz in Cambridge’s Leverhulme Centre for Life in the Universe is an ecological time traveler. She uses field-based laser-scanning and statistical mathematical ecology on 580-million-year-old fossils of deep-sea organisms to determine the driving factors that influence the macro-evolutionary patterns of life on Earth. Speaking during ETH Zurich’s Origins of Life session at the AAAS, Mitchell took participants back in time to 4-billion years ago when Earth’s early atmosphere – devoid of oxygen and steeped in methane – showed its first signs of microbial life. She spoke about how life survives in extreme environments and then evolves offering potential Astro-biological insights into the origins of life elsewhere in the universe.

“As we begin to investigate other planets, through the Mars missions,” Mitchell says, “biosignatures could reveal whether or not the origin of life itself and its evolution on Earth is just a happy accident or part of the fundamental nature of the universe, with all its biological and ecological complexities.”

Colonizing space with synthetic cells

While complex biological cells are not yet fully understood, synthetic cells allow biochemists, like Kate Adamala, University of Minnesota’s Protobiology Lab to deconstruct complex systems into simpler parts. Parts that allow scientists to understand the basic principles of life and evolution not only on Earth, but potentially life on other planets in the solar system.

Adamala launched her quest to build life from scratch as a graduate student at Harvard working with Nobel Laureate, Jack Szostak. She endeavors to create simple, cell-like bioreactors resembling the earliest forms of life by applying the principles of engineering to biology. During the AAAS, Adamala explained how synthetic cells allow scientists to study the past, present, and future of life in the universe. Unlike biological cells, it is possible to digitalize synthetic cells and transmit them across vast distances to create, for example, on demand medication or vaccines – an “Astro-pharmacy” that could potentially support life on spaceship, or even a future Martian colony. Until such time, synthetic cells offer practical applications for humanity in terms of sustainable energy systems, higher crop yields, and biomedical therapies.

What is life?

While there is not yet a comprehensive definition of life, the quest to discover its origins has inspired enthusiasm, new collaborations, and opened the doors within the scientific community’s most hallowed halls.

 

Special thanks to Carl Zimmer, a columnist for The New York Times and author of “Life’s Edge: The search for what it means to be alive” for moderating ETH Zurich’s Origins of Life discussion during the AAAS.

###

 

Public Announcement

Embargoed until March 4th, 2023, 1 PM ET / 6 PM GMT / 19hrs CET

Origins Federation

Researchers from four leading institutions are pleased to announce their intent to create a research consortium with the goal of facilitating efficient multidisciplinary and innovative collaborative research to advance our understanding of the emergence and early evolution of life, and its place in the cosmos.

The following centers establish the Origins Federation:

  • The Origins of Life Initiative (Harvard University),
  • Centre for Origin and Prevalence of Life (ETH Zurich),
  • Center for the Origins of Life (The University of Chicago),
  • Leverhulme Centre for Life in the Universe (University of Cambridge).

The Origins Federation will pursue scientific research topics of interest to its founding centers with a long-term perspective and common milestones. It will strive to establish a stable funding platform to create opportunities for creative and innovative ideas, and to enable young scientists to make a career in this new field.

The Origins Federation is open to new members, both centers and individuals, and is committed to developing the mechanisms and structure to achieve that aim.

The Origins Federation inaugural science conference will take place at Harvard University on September 12 – 15, 2023.



Article Title

Humanity’s quest to discover the origins of life in the universe

Article Publication Date

4-Mar-2023

COI Statement

No conflicts of interest reported.

Share12Tweet8Share2ShareShareShare2

Related Posts

Researchers

Advanced electrode to help remediation of stubborn new ‘forever chemicals’

March 28, 2023
Marijuana-derived compounds could reverse opioid overdoses

Marijuana-derived compounds could reverse opioid overdoses

March 28, 2023

Pulsing ultrasound waves could someday remove microplastics from waterways

March 28, 2023

Aging | Parsing chronological and biological age effects on vaccine responses

March 27, 2023

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    66 shares
    Share 26 Tweet 17
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    43 shares
    Share 17 Tweet 11
  • Insular dwarfs and giants more likely to go extinct

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

NIH researchers discover new autoinflammatory disease, suggest target for potential treatments

CPEB4 protein is essential for maintaining the antitumour function of T lymphocytes

Europe PMC integrates ROR into its Grant Finder

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In