• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Hubble discovers mysterious black hole disc

Bioengineer by Bioengineer
July 11, 2019
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ESA/Hubble, M. Kornmesser

Astronomers using the NASA/ESA Hubble Space Telescope have observed an unexpected thin disc of material encircling a supermassive black hole at the heart of the spiral galaxy NGC 3147, located 130 million light-years away.

The presence of the black hole disc in such a low-luminosity active galaxy has astronomers surprised. Black holes in certain types of galaxies such as NGC 3147 are considered to be starving as there is insufficient gravitationally captured material to feed them regularly. It is therefore puzzling that there is a thin disc encircling a starving black hole that mimics the much larger discs found in extremely active galaxies.

Of particular interest, this disc of material circling the black hole offers a unique opportunity to test Albert Einstein’s theories of relativity. The disc is so deeply embedded in the black hole’s intense gravitational field that the light from the gas disc is altered, according to these theories, giving astronomers a unique peek at the dynamic processes close to a black hole.

“We’ve never seen the effects of both general and special relativity in visible light with this much clarity,” said team member Marco Chiaberge of AURA for ESA, STScI and Johns Hopkins Univeristy.

The disc’s material was measured by Hubble to be whirling around the black hole at more than 10% of the speed of light. At such extreme velocities, the gas appears to brighten as it travels toward Earth on one side, and dims as it speeds away from our planet on the other. This effect is known as relativistic beaming. Hubble’s observations also show that the gas is embedded so deep in a gravitational well that light is struggling to escape, and therefore appears stretched to redder wavelengths. The black hole’s mass is around 250 million times that of the Sun.

“This is an intriguing peek at a disc very close to a black hole, so close that the velocities and the intensity of the gravitational pull are affecting how we see the photons of light,” explained the study’s first author, Stefano Bianchi, of Università degli Studi Roma Tre in Italy.

In order to study the matter swirling deep inside this disc, the researchers used the Hubble Space Telescope Imaging Spectrograph (STIS) instrument. This diagnostic tool divides the light from an object into its many individual wavelengths to determine the object’s speed, temperature, and other characteristics at very high precision. STIS was integral to effectively observing the low-luminosity region around the black hole, blocking out the galaxy’s brilliant light.

The astronomers initially selected this galaxy to validate accepted models about lower-luminosity active galaxies: those with malnourished black holes. These models predict that discs of material should form when ample amounts of gas are trapped by a black hole’s strong gravitational pull, subsequently emitting lots of light and producing a brilliant beacon called a quasar.

“The type of disc we see is a scaled-down quasar that we did not expect to exist,” Bianchi explained. “It’s the same type of disc we see in objects that are 1000 or even 100 000 times more luminous. The predictions of current models for very faint active galaxies clearly failed.”

The team hopes to use Hubble to hunt for other very compact discs around low-luminosity black holes in similar active galaxies.

###

More information

The Hubble Space Telescope is a project of international cooperation between ESA and NASA.

The team’s paper will appear in the journal the Monthly Notices of the Royal Astronomical Society.

The international team of astronomers in this study consists of Stefano Bianchi (Universita` degli Studi Roma Tre, Italy), Robert Antonucci (University of California, Santa Barbara, USA), Alessandro Capetti (INAF – Osservatorio Astrofisico di Torino, Italy), Marco Chiaberge (Space Telescope Science Institute and Johns Hopkins University, Baltimore, USA), Ari Laor (Israel Institute of Technology, Israel), Loredana Bassani (INAF/IASF Bologna, Italy), Francisco J. Carrera (CSIC-Universidad de Cantabria, Spain), Fabio La Franca (Universita` degli Studi Roma Tre, Italy), Andrea Marinucci (Universita` degli Studi Roma Tre, Italy), Giorgio Matt1 (Universita` degli Studi Roma Tre, Italy), Riccardo Middei (Universita` degli Studi Roma Tre, Italy), Francesca Panessa (INAF Istituto di Astrofisica e Planetologia Spaziali, Italy).

Image credit: ESA/Hubble, M. Kornmesser

Links

  • Images of Hubble – http://www.spacetelescope.org/images/archive/category/spacecraft/
  • Hubblesite release – http://hubblesite.org/news_release/news/2019-35
  • Science Paper – http://fdslive.oup.com/http://www.oup.com/pdf/production_in_progress.pdf

Contacts

Stefano Bianchi

Dipartimento di Matematica e Fisica, Universita` degli Studi Roma Tre

Rome, Italy

Email: [email protected]

Bethany Downer

ESA/Hubble, Public Information Officer

Garching, Germany

Email: [email protected]

Media Contact
Bethany Downer
[email protected]

Original Source

https://www.spacetelescope.org/news/heic1913/?lang

Tags: AstrophysicsSpace/Planetary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Fluorine “Forever Chemical” in Medicines Does Not Increase Drug Reaction Risks

Fluorine “Forever Chemical” in Medicines Does Not Increase Drug Reaction Risks

September 2, 2025
Eliminating Yellow Stains on Fabric Using Blue Light: A Scientific Breakthrough

Eliminating Yellow Stains on Fabric Using Blue Light: A Scientific Breakthrough

September 2, 2025

Unraveling the Physics Behind Universal Unusual Magnetoresistance

September 2, 2025

Quantum researchers capture real-time magnetic flipping at the core of a single atom

September 2, 2025
Please login to join discussion

POPULAR NEWS

  • Needlestick Injury Rates in Nurses and Students in Pakistan

    296 shares
    Share 118 Tweet 74
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionizing Art Education with Multimodal Deep Learning

KIF13B Protein Regulates Liver Metabolism, Combats Fatty Liver

Transforming Date Palm Waste into Probiotic Yogurt Enhancements

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.