• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

HSC transplants in embryos: Opening the door for hematopoiesis research

Bioengineer by Bioengineer
March 5, 2021
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from the University of Tsukuba have described, for the first time, a new technique for hematopoietic stem cell transplantation in embryos that does not require destroying host hematopoietic system

IMAGE

Credit: University of Tsukuba

Most people have heard of stem cells, cells from which all other cells with specialized functions are generated. Hematopoietic stem cells (HSCs) are the architects of blood cell development and are responsible for blood cell formation throughout the life of an organism. HSCs are also used in the treatment of cancer and immune disturbances.

Previous research into HSC transplantation has involved the use of adult and fetal mice. This has involved the removal of recipient HSCs using approaches including irradiation and the administration of DNA damaging drugs. In a first of its kind, researchers from the University of Tsukuba devised a novel approach for HSC deletion in mouse embryos. This report provides the first description of embryonic HSC depletion and transplantation of donor HSCs into the embryo via the placenta.

In describing their approach, Assistant Professor Michito Hamada says: “We were able to exploit the genetics of HSC development in mice to generate mice that completely lack HSCs in the fetal liver, making these mice the perfect recipients for HSC transplantation.” Mice lacking the Runx1 gene do not survive into adulthood and die at embryonic day 12.5, in part because they lack HSCs. The recipient mice developed by this team have Runx1 transgenes that partially restore the effects of Runx1 absence, and while these mice still lack HSCs, they can develop until embryonic day 18.5.

Using these recipient mice, the research team explored the effects of transplanting HSCs from the same species (allogenic) or from a different species (xenogeneic). The placentas of recipient mice were injected with donor HSCs at embryonic day 11.5, before the development of the immune system. Excitingly, over 90% the HSCs of recipient fetuses were from the donor, irrespective of species.

Analysis of the HSCs that developed in recipient mice after transportation revealed that they contributed to the development of both white and red blood cells. Furthermore, additional transplant of these cells into adult recipients revealed that the HSCs were functional and had retained normal abilities.

“These results are really exciting,” explains Professor Satoru Takahashi. “These mice represent a new tool that can be used to advance HSC research. The ability to perform HSC transplants at an earlier developmental stage really allows us to explore fetal hematopoiesis and, in the future, this model could be ‘humanized’ using human HSCs. The applications appear endless.”

###

The article, “Generation of reconstituted hemato-lymphoid murine embryos by placental transplantation into embryos lacking HSCs,” was published in Scientific Reports at https://doi.org/10.1038/s41598-021-83652-9.

Media Contact
Naoko Yamashina
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41598-021-83652-9

Tags: HematologyMedicine/HealthTransplantation
Share12Tweet8Share2ShareShareShare2

Related Posts

Unveiling Takotsubo Syndrome: The Overlooked Cardiac Threats in Intensive Care Units

Unveiling Takotsubo Syndrome: The Overlooked Cardiac Threats in Intensive Care Units

August 19, 2025
Mary Jo Pugh Receives National Outstanding Research Accomplishment Award for Uncovering Long-Term Consequences of TBI

Mary Jo Pugh Receives National Outstanding Research Accomplishment Award for Uncovering Long-Term Consequences of TBI

August 19, 2025

Ochsner Children’s Leads Louisiana with First Robotic-Assisted Pediatric Spine Surgery

August 18, 2025

High-Resolution Study Reveals ‘Metabolic Handoff’ from Fruit Fly Mothers to Embryos

August 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unveiling Takotsubo Syndrome: The Overlooked Cardiac Threats in Intensive Care Units

Double the Genomes, Double the Insight: Advancing Reptile Sex Studies

Nanorod Phosphides Enhance Sodium-Ion Battery Anode Performance

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.