• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

How we learn is a quantum-like manner!

Bioengineer by Bioengineer
January 23, 2020
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ILLUSTRATION BY HOLLY WILDER/USC


Imagine that you met a charming girl in school. She is an excellent student who concerns about the world welfare and is anti-war and anti-nuclear. Which do you think she is most likely to become in the future, a bank counter clerk, or, a bank counter clerk and feminist? Surveys show that most people think it’s easy and choose the latter. Their choice is right. However, according to classical probability theory, the probability of the former is definitely higher than the latter because the former contains the latter. That paradox calls for more modeling to be established to better fit facts.

Prof. ZHANG Xiaochu and his group developed new frameworks to better explain such human decision-making behaviors using the concept of quantum, and their result is published in Nature Human Behaviour in January 2020. They established the quantum reinforcement learning framework for human decision-making applying concepts from quantum probability theory. For example, they chose quantum probability amplitude rather than classical probability to describe the tendency of selecting a specific action. In this way they proposed quantum models that are comparable to the best classical models. Furthermore, they checked the functional magnetic resonance imaging (fMRI) data of human brain playing the Iowa Gambling Task. They were surprised to find that several important internal-state-related variables involved in their models are represented in the medial frontal gyrus (MeFG), which is important for human learning and decision-making. This shows a unique quantum-like neural mechanism for how the internal state is changed due to external information. In other words, this implies that how human brain works is a quantum-like manner, which is worthy of further research.

These models bring people new perspectives on understanding how human brains run. It’s inspired by machine learning development and is possible to elevate the efficiency of machine learning. In the meantime, the quantum-like mechanisms in the brain are still not fully understood. This deserves additional studies and is likely to change the history.

###

(Written by LIU Zige, edited by YE Zhenzhen, USTC News Center)

Media Contact
Jane FAN Qiong
[email protected]
86-551-636-07280

Related Journal Article

http://dx.doi.org/10.1038/s41562-019-0804-2

Tags: BioinformaticsBiology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Bee Genome Study Uncovers Transposable Element Evolution

November 5, 2025
blank

Single-Particle Genomics Reveals Abundant Unusual Marine Viruses

November 5, 2025

Revolutionary Brain Implants Offer Therapy Without Surgery

November 5, 2025

Exploring Histone Acetyltransferase Genes in Bursaphelenchus xylophilus

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Nomogram Predicts Lymphoma Blood Clots

Key Data Variables in Neonatal Transport Uncovered

Plant Polyphenols: Key Players in Ovarian Aging

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.