• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

How Venus flytraps snap

Bioengineer by Bioengineer
July 10, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Hannes Vogler, UZH

Venus flytraps catch spiders and insects by snapping their trap leaves. This mechanism is activated when unsuspecting prey touch highly sensitive trigger hairs twice within 30 seconds. A study led by researchers at the University of Zurich has now shown that a single slow touch also triggers trap closure – probably to catch slow-moving larvae and snails.

The Venus flytrap (Dionaea muscipula) is perhaps the most well-known carnivorous plant. It catches its prey, mostly spiders and insects, using a sophisticated trapping mechanism. Its distinct leaves have three highly sensitive trigger hairs on each lobe. These hairs react to even the slightest touches – e.g. when a fly crawls along the leaf – by sending out an electrical signal, which quickly spreads across the entire leaf. If two signals are triggered in a short time, the trap snaps within milliseconds.

New trigger for trapping mechanism

The physiological reactions on which this trapping mechanism is based have been studied for over 200 years. The consensus has been that every sufficiently strong touch of a trigger hair causes an electrical signal, and that two signals within 30 seconds result in the closing of the trap. A new study from the University of Zurich (UZH) and ETH Zurich has now found another triggering mechanism. “Contrary to popular belief, slowly touching a trigger hair only once can also cause two signals and thus lead to the snapping of the trap,” says co-last author Ueli Grossniklaus, director of the Department of Plant and Microbial Biology at UZH.

First, the interdisciplinary team of researchers determined the forces needed to trigger the plant’s trapping mechanism. They did this by using highly sensitive sensors and high-precision microrobotic systems developed by the team of co-last author Bradley J. Nelson at the Institute of Robotics and Intelligent Systems at ETH Zurich. This enabled the scientists to deflect the trigger hairs to a precise angle at a pre-defined speed in order to measure the relevant forces. These experiments confirmed the previous theory. If the chosen parameters approximate the touch of regular prey, it takes two touches for the trap to snap.

From the collected data, the researchers at the ETH Institute for Building Materials developed a mathematical model to determine the range of angular deflection and velocity thresholds that activate the snapping mechanism. “Interestingly, the model showed that at slower angular velocities one touch resulted in two electrical signals, such that the trap ought to snap,” says Grossniklaus. The researchers were subsequently able to confirm the model’s prediction in experiments.

Catching slow prey

When open, the lobes of the Venus flytrap’s leaves are bent outwards and under strain – like a taut spring. The trigger signal leads to a minute change in the leaves’ curvature, which makes the trap snap instantaneously. The electrical signals are generated by ion channels in the cell membrane, which transport atoms out of and into the cell. “We think that the ion channels stay open for as long as the membrane is mechanically stretched. If the deflection occurs slowly, the flow of ions is enough to trigger several signals, which causes the trap to close,” explains co-first author Hannes Vogler, plant biologist at UZH. The newly discovered triggering mechanism could be a way for the Venus flytrap to catch slow-moving prey, such as larvae or snails.

###

Media Contact
Ueli Grossniklaus
[email protected]

Original Source

https://www.media.uzh.ch/en/Press-Releases/2020/Venus-Flytrap.html

Related Journal Article

http://dx.doi.org/10.1371/journal.pbio.3000740

Tags: Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.