• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, December 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

How to invest in a fairer and low carbon energy system

Bioengineer by Bioengineer
April 30, 2021
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Heriot-Watt University

Governments throughout the world have accelerated their ambitions towards effective climate change mitigation. What is clear, in this challenge of how to tackle the complex and global issue of climate change, is that there is no one technology or stakeholder that will drive the full and timely decarbonisation that the world and its citizens require.

Therefore, as part of this global energy transition, there is an unprecedent increase in decarbonisation investments accompanied with new levels of accessibility to both energy systems and markets. So, a key research question is how best to understand and optimise the value proposition for different stakeholders. Due to the need to fast track decarbonisation and to ensure that this is an inclusive energy transition with social justice and equity at its core, we need to understand the dynamics and interdependencies across people, technology and economics.

A team of researchers within the Smart Systems Group at Heriot-Watt University, have been exploring how Game-theoretic models could represent a promising approach to study strategic interactions between self-interested private energy system investors.

In this research, we design and evaluate a game-theoretic framework to study strategic interactions between profit-maximising players that invest in an electrical network, renewable generation and storage capacity. Specifically, we study the case where grid capacity is developed by a private renewable investor, but line access is shared with competing renewable and storage investors, thus enabling them to export energy and access electricity demand.

Professor David Flynn, founder of the Smart Systems Group, stated; “We model the problem of deducing how much capacity each player should build as a non-cooperative Stackelberg-Cournot game between a dominant player (leader) who builds the power line and renewable generation capacity, and local renewable and storage investors (multiple followers), who react to the installation of the line by increasing their own capacity. Using data-driven analysis and simulations, we developed an empirical search method for estimating the game equilibrium, where the payoffs capture the realistic operation and control of the energy system under study.”

The results within this research use a practical demonstration of the underlying methodologies, for a real-world grid reinforcement project in the UK. The methodology provides a realistic mechanism to analyse investor decision-making and investigate feasible tariffs that encourage distributed renewable investment, with sharing of grid access.

###

The journal was recently published in IEEE Access, led by Professor Flynn’s Smart Systems Group at Heriot-Watt University, and supported by the UKRI Responsive Flexibility, ReFLEX, whole system demonstrator project, and the UKs EPSRC National Centre for Energy System Integration.

Media Contact
Susan Kerr
[email protected]

Related Journal Article

http://dx.doi.org/10.1109/ACCESS.2021.3062981

Tags: Climate ChangeEnergy SourcesTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Neighboring Groups Speed Up Polymer Self-Deconstruction

Neighboring Groups Speed Up Polymer Self-Deconstruction

November 28, 2025
blank

Activating Alcohols as Sulfonium Salts for Photocatalysis

November 26, 2025

Carbonate Ions Drive Water Ordering in CO₂ Reduction

November 25, 2025

Isolable Germa-Isonitrile with N≡Ge Triple Bond

November 24, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    120 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    106 shares
    Share 42 Tweet 27
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    67 shares
    Share 27 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gene Redundancy Unlocks Pathogen Evolution and Infection

Advancing CAR T Cell Therapy for CNS Tumors

Evaluating Intangible Cultural Heritage Through Multimodal Machine Learning

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.