• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

How to imitate natural spring-loaded snapping movement without losing energy

Bioengineer by Bioengineer
September 3, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

UMass Amherst materials scientists outline fundamental physics of bending into a snap

IMAGE

Credit: UMass Amherst

AMHERST, Mass. – Venus flytraps do it, trap-jaw ants do it, and now materials scientists at the University of Massachusetts Amherst can do it, too – they discovered a way of efficiently converting elastic energy in a spring to kinetic energy for high-acceleration, extreme velocity movements as nature does it.

In the physics of human-made and many natural systems, converting energy from one form to another usually means losing a lot of that energy, say first author Xudong Liang and senior researcher Alfred Crosby. “There is always a high cost, and most of the energy in a conversion is lost,” Crosby says. “But we have discovered at least one mechanism that helps significantly.” Details are in Physical Review Letters.

Using high-speed imaging, Liang and Crosby measured in fine detail the recoiling, or snapping, motion of elastic bands that can reach accelerations and velocities similar to many of the natural biological systems that inspired them. By experimenting with different elastic band conformations, they discovered a mechanism for imitating ant and flytrap fast-motion, high-power impulse events with minimal energy loss.

Liang, who is now on the faculty at Binghamton University, and Crosby are part of a group that includes roboticists and biologists led by former UMass Amherst expert Sheila Patek, now at Duke University. She has studied the mantis shrimp’s extremely rapid raptorial appendage-snapping motion for years. Their multi-institution team is supported by a U.S. Army Multidisciplinary University Research Initiative (MURI) grant funded by the U. S. Army Research Laboratory and its Research Office.

In Liang’s observations and experiments, he discovered the underlying conditions where energy is most conserved – plus the fundamental physics – and presents what Crosby calls “some really beautiful theory and equations” to support their conclusions. “Our research reveals that internal geometric structures within a spring play a centrally important role in enhancing the energy conversion process for high-power movements,” Crosby notes.

The secret turned out to be adding strategically placed elliptical – not circular – holes to the elastic band, Liang says. “Maintaining efficiency is not intuitive, it’s very difficult to guess how to do it before you experiment with it. But you can start to form a theory once you see how the experiment goes over time. You can start to think about how it works.”

He slowed the action to watch the snapping motion in a synthetic polymer that acts like a rubber band.

Liang discovered that the structural secret is in designing a pattern of holes. “With no holes everything just stretches,” he notes. “But with holes, some areas of the material will turn and collapse.” When plain bands are stretched and recoiled, less than 70% of the stored energy is harnessed for high-power movement, the rest is lost.

By contrast, adding pores transforms the bands into mechanical meta-materials that create motion through rotation, Liang explains. He and Crosby demonstrate that with meta-materials, more than 90% of the stored energy is used to drive movement. “In physics, bending accomplishes the same movement with less energy, so when you manipulate the pattern of the pores you can design the band to bend internally; it becomes high-efficiency,” Crosby adds.

“This shows that we can use structure to change properties in materials. Others knew this was an interesting approach, but we moved it forward, especially for high-speed movement and the conversion from elastic energy to kinetic energy, or movement.”

The two hope this advance will help roboticists on their MURI team and others with a performance goal to help them design high-efficiency, rapid kinetic robotic systems.

Liang says, “Now we can hand over some of these structures and say, ‘Here’s how to design a spring for your robots.’ We think the new theory opens up a lot of new ideas and questions on how to look at the biology, how the tissues are structured or their shells are configured to allow rotation that we show is the key,” he adds.

###

Media Contact
Janet Lathrop
[email protected]

Original Source

https://www.eurekalert.org/pio/submit/submit.release.content.php?did=432444

Related Journal Article

http://dx.doi.org/10.1103/PhysRevLett.125.108002

Tags: Biomechanics/BiophysicsChemistry/Physics/Materials SciencesMaterialsPolymer Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Pulp Mill Waste Transformed into Eco-Friendly Solution for Eliminating Toxic Dyes

September 27, 2025

Fluorogenic Probes Unveil Ferroptosis Onset, Progression

September 26, 2025

Cutting-Edge Adaptive Optics Boost Gravitational-Wave Discoveries

September 26, 2025

Jingyuan Xu of KIT Honored with “For Women in Science” Sponsorship Award

September 26, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    83 shares
    Share 33 Tweet 21
  • Physicists Develop Visible Time Crystal for the First Time

    72 shares
    Share 29 Tweet 18
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unlocking Sustainable Lipids from Gongronella butleri

Nickel-Doped α-Bi2O3 Boosts Biomass Carbon Supercapacitors

Genome Study Reveals Pediococcus Genes Tied to Beer Spoilage

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.