• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

How to hack a cell

Bioengineer by Bioengineer
April 4, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The human body is made up of trillions of cells, microscopic computers that carry out complex behaviors according to the signals they receive from each other and their environment. Synthetic biologists engineer living cells to control how they behave by converting their genes into programmable circuits. A new study published by Assistant Professor Wilson Wong (BME) in Nature Biotechnology outlines a new simplified platform to target and program mammalian cells as genetic circuits, even complex ones, more quickly and efficiently.

"The problem synthetic biologists are trying to solve is how we ask cells to make decisions and try to design a strategy to make the decision we want it to," said Wong. "With these circuits, we took a completely different design approach and have created a framework for researchers to target specific cell types and make them perform different types of computations, which will be useful for developing new methods for tissue engineering, stem cell research and diagnostic applications, just to name a few."

Historically, engineered genetic circuits were inspired by circuit design in electronics, following a similar approach using transcription factors, proteins that induce DNA conversion to RNA, which is tricky to work with because it's hard to predict an entirely new strand of genetic code. Mammalian cells are especially tricky to work with because they are a much more variable environment and express highly complex behaviors, rendering the electronics approach to circuit design time consuming at best and unreliable at worst.

Wong's approach uses DNA recombinases, enzymes that cut and paste pieces of DNA sequences, allowing for more targeted manipulation of cells and their behavior. The result is a platform named "BLADE," or "Boolean logic and arithmetic through DNA excision," referring to the computer language the cells are programmed with and the computations they can be programmed to carry out. BLADE will allow researchers to use different signals, or inputs, in one streamlined device to control the outputs, or behaviors, of the cells they target.

"The idea was to build a system simple and flexible enough that it can be customized in the field to get any desired outcome using one simple design, instead of having to rebuild and retry a new design every time," said Benjamin Weinberg, graduate student in Wong's laboratory and first author on the paper. "Essentially, with BLADE, you can implement any combination of computations you want in mammalian cells. For this particular paper, we might not have built the particular behavior you need, but we wanted to illustrate that using BLADE, you should be able to build the circuit you need to fulfill the behavior you are looking for."

The paper published in Nature Biotechnology outlines over one hundred examples of circuits that were successfully built using the BLADE platform. Weinberg noted that the researchers intentionally built complex circuits with complicated functions to illustrate the possibilities using their design, including some that program human cells to add or subtract numbers. He uploaded the design plans to an open-source online repository so that other researchers could begin downloading the tools to use in their projects immediately. Weinberg will continue to refine the technology and incorporate into a software program to make it even easier to use, while Wong plans on using the platform to explore medical diagnostic applications.

"Before BLADE, any one of these circuits would have taken several years to build and make functional and then you would have to use trial-and-error to make it work the way you want it to," said Wong. "I have been doing synthetic biology research for 15 years and I've never seen such a complex circuits work on the first try like with this platform. We're excited to get it out there so people can start using it, and we're excited to see what they come up with."

###

Media Contact

Wilson Wong
[email protected]
617-358-6958

College of Engineering

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Enhanced Asymmetric Supercapacitor via Ni-Doped MnMoO4 & CNTs

Enhanced Asymmetric Supercapacitor via Ni-Doped MnMoO4 & CNTs

November 3, 2025

Enhancing Adolescent Health Literacy: Insights from Nurses

November 3, 2025

CoMn2O4-rGO Nanocomposite Enhances Supercapacitor Performance

November 3, 2025

Perpendicular-Anisotropy Spin Ice Enables Tunable Reservoir Computing

November 3, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1296 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhanced Asymmetric Supercapacitor via Ni-Doped MnMoO4 & CNTs

Enhancing Adolescent Health Literacy: Insights from Nurses

CoMn2O4-rGO Nanocomposite Enhances Supercapacitor Performance

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.