• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, January 14, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

How to discover new materials quickly

Bioengineer by Bioengineer
July 10, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Material research

IMAGE

Credit: RUB, Marqard

An unexplored cosmos of potential materials

The number of potential new materials that can be assembled from elements in the periodic table is immense – even if researchers were to limit themselves to the 40 to 50 elements that are non-toxic, eco-friendly, and available on Earth in sufficient quantities. These possibilities remain as yet for the most part unexplored.

New methods of manufacturing such materials open up new possibilities for a more efficient approach. “By depositing simultaneously atoms from three or more directions on a substrate, we produce so-called thin-film materials libraries,” explains Alfred Ludwig.

High-throughput screening

In order to render those libraries usable, they not only must be manufactured in high-throughput processes, but efficient methods must be deployed to analyse the properties of the materials. This is the only way to find out if the library contains any material composition that offers properties that are interesting for a potential application. “In order to accelerate the entire process of discovering new materials, both the measurements and the analysis should ideally be automated,” explains Ludwig.

He would like the use of a database to become at least partially automated, in order to maintain control over the anticipated immense volumes of material data. “It is moreover important for these data to be compatible for the use by research groups from different disciplines,” as he points out. Documentation should be carried out not only for the data of element compositions that seem particularly promising, but also for all others. “The purpose of this approach is to facilitate machine learning and to enable artificial intelligence to aid the search for new materials,” concludes Ludwig.

###

Original publication

Alfred Ludwig: Discovery of new materials using combinatorial synthesis and high-throughput characterization of thin-film materials libraries combined with computational methods, in: NPJ Computational Materials, 2019, DOI: 10.1038/s41524-019-0205-0

Press contact

Prof. Dr. Alfred Ludwig

Materials Discovery and Interfaces

Institute for Materials

Department of Mechanical Engineering

Ruhr-Universität Bochum

Germany

Phone: +49 234 32 27492

Email: [email protected]

Media Contact
Dr. Alfred Ludwig
[email protected]

Original Source

https://news.rub.de/english/press-releases/2019-07-10-material-research-how-discover-new-materials-quickly

Related Journal Article

http://dx.doi.org/10.1038/s41524-019-0205-0

Tags: Chemistry/Physics/Materials SciencesMaterials
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Thermal [2+2] Cycloaddition Builds Gem-Difluoro Bicycloalkanes

January 13, 2026
blank

Cobalt-Catalyzed Thioester Coupling via Siloxycarbene

January 12, 2026

Advancing Alkene Chemistry: Homologative Difunctionalization Breakthrough

January 8, 2026

Biocompatible Ligand Enables Safe In-Cell Protein Arylation

January 8, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    147 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    74 shares
    Share 30 Tweet 19
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    52 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cerebrospinal Fluid Flow Changes in Parkinson’s Disease

Gut Microbiota l-Theanine Boosts Amino Acid Breakdown

Boosting Sb2(S,Se)3 Solar Cells with Sodium Sulfide

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.