• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, December 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

How time affects the fate of stem cells

Bioengineer by Bioengineer
September 26, 2019
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: D. Suter, EPFL.

How do temporal variations in protein concentrations affect biology? It’s a question that biologists have only recently begun to address, and the findings are increasingly showing that random temporal changes in the amount of certain proteins play a direct and significant role on biological processes.

In a new study published in Molecular Systems Biology, researchers at the lab of David Suter at EPFL have found that temporal fluctuations in protein concentrations can determine the type of cell that embryonic stem cells will become.

The scientists studied two important transcription factors, SOX2 and OCT4 whose levels in embryonic stem cells change over time. Both of these transcription factors are important for embryonic stem cell self-renewal and differentiation (or “fate”) into specific cell types.

To monitor their temporal fluctuations, the team carried out sophisticated genome engineering, generating five knock-in “reporter” genes in a single line of embryonic stem cells. These are genes that are attached near a gene of interest (in this case the genes for SOX2 and OCT4) and produce a visible signal – e.g. fluorescent light – when the target gene is expressed in a cell, thus “reporting” when it produces its corresponding protein.

Using this method, the researchers could monitor the fluctuations of SOX2 and OCT4 over time in living cells and determine how these fluctuations impact the fate of the embryonic stem cells.

The study found that small changes in the levels of either transcription factors impacts the fate of the cells, but only during the first cell-growth phase of the cell’s life (the G1 phase). Increased SOX2 levels seem to “push” embryonic stem cells towards neuronal-type cells (those that come from the neuroectoderm), while elevated OCT4 levels strongly directed cells towards both neuronal and non-neuronal differentiated cell types. The reason, the scientists found, is that high OCT4 levels increase the accessibility of differentiation factors to the cell’s chromatin.

“As fluctuations in transcription factor concentrations are to a large extent driven by the inherent randomness of the gene expression cascade, these could set fundamental limits in our ability to redirect cell fate decisions for therapeutic purposes,” says Suter. “Further work will be required to determine whether these fluctuations could be at least partially suppressed to mitigate their impact on controlling the fate of embryonic stem cells.”

###

Reference

Daniel Strebinger, Cédric Deluz, Elias T. Friman, Subashika Govindan, Andrea B. Alber, David M. Suter. Endogenous fluctuations of OCT4 and SOX2 bias pluripotent cell fate decisions. Molecular Systems Biology (2019)15:e9002, 25 September 2019. DOI: 10.15252/msb.20199002

Media Contact
Nik Papageorgiou
[email protected]

Related Journal Article

http://dx.doi.org/10.15252/msb.20199002

Tags: BiologyBiotechnologyCell BiologyDevelopmental/Reproductive BiologyGeneticsMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

New Insights on Angiogenesis and Cell Death in Spinal Cord Injury

December 28, 2025

Assessing Surgical Nurses’ AI Literacy and Readiness

December 28, 2025

Link Between Physical Activity and Youth Mental Health

December 28, 2025

LncRNA AC040169.1 Enhances Ovarian Cancer via m6A Regulation

December 28, 2025
Please login to join discussion

POPULAR NEWS

  • Robotic Waist Tether for Research Into Metabolic Cost of Walking

    NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    44 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Insights on Angiogenesis and Cell Death in Spinal Cord Injury

Assessing Surgical Nurses’ AI Literacy and Readiness

Link Between Physical Activity and Youth Mental Health

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.