• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

How the giant sequoia protects itself

Bioengineer by Bioengineer
June 17, 2020
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Photo: Plant Biomechanics Group Freiburg

The giant sequoia (Sequoiadendron giganteum) has developed effective strategies to protect itself against external influences in its natural environment in the Sierra Nevada. Its bark ensures that the tree survives wild fires and rock fall almost unscathed. Prof. Dr. Thomas Speck from the Cluster of Excellence Living, Adaptive and Energy-autonomous Materials Systems (livMatS), working with Dr. Georg Bold and Max Langer of the Institute of Biology, have examined the structural properties of its bark in detail for the first time. The University of Freiburg team has shown that the bark fibers form a three-dimensional network with cavities. This network distributes energy acting on the bark across the entire tissue. The results of their study have been published in the International Journal of Molecular Sciences.

The outer bark of the sequoia tree contains many fibers, which are organized in fiber bundles. These cross over each other and are also layered on top of each other, creating a three-dimensional netted structure. In between the fiber bundles are air-filled cavities. When a rock strikes the bark, these cavities are compressed. Compressing the hollow spaces and stretching the fiber network has the effect of distributing the energy evenly over the bark and protecting the inside of the tree with the sensitive cambium that forms wood and bark. The bark later returns almost completely to its original state. The cavities also insulate the tree so that it is resistant to the heat generated during wild fires.

Due to this structure, the bark of the sequoia tree behaves like an open-pored foam similar to the foam used in the construction of cars and houses, for example. On the basis of their findings, the researchers are, among others, to develop with colleagues from the University of Stuttgart a new type of light weight concrete with bundles of hollow fibers, which could be used to insulate and to better protect buildings against earthquakes, for example.

###

Contact:

Cluster of Excellence livMatS / Institute of Biology II

University of Freiburg

Media Contact
Thomas Speck
[email protected]

Tags: BiologyBiomechanics/BiophysicsBiomedical/Environmental/Chemical EngineeringBiotechnologyForestryTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Spotting Supernovae at Lightning Speed: A New Era in Cosmic Discovery

Spotting Supernovae at Lightning Speed: A New Era in Cosmic Discovery

August 19, 2025
blank

Novel Asymmetrical Molecule Unlocks Perfect Photocatalyst Potential

August 19, 2025

Innovative Hydrogel Surface Boosts Oil–Water Separation Speed by 5×

August 19, 2025

Magnetic Forces Boost Water Electrolysis in Microgravity

August 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cadonilimab Shows Promise in Advanced Gynecological Cancers

Nerolidol and Cyclophosphamide Combat Breast Cancer Cells

Hearing Aid Use Linked to Reduced Risk of Developing Dementia, Study Finds

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.