• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

How the brain reacts to loss of vision

Bioengineer by Bioengineer
December 19, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Going blind affects all senses, and disrupts memory ability

If mice lose their vision immediately after birth due to a genetic defect, this has a considerable impact, both on the organisation of the cerebral cortex and on memory ability. This is the conclusion drawn by researchers at Ruhr-Universität Bochum in a study published online in the journal Cerebral Cortex on 7 December 2018. They demonstrated that, in the months after blindness emerged, the density of neurotransmitter receptors that regulate excitation balance and are required for memory encoding was altered in all areas of the cortex that process sensory information. Furthermore, the hippocampus, a brain region that plays a crucial role in memory processes, was profoundly affected.

Mirko Feldmann, Daniela Beckmann, Professor Ulf Eysel and Professor Denise Manahan-Vaughan from the Department of Neurophysiology conducted the study.

Other senses sharpen after loss of vision

Following the loss of vision, other senses become gradually more sensitive: tactile and hearing acuity and one’s sense of smell all improve, enabling a blind individual to use these senses to navigate accurately through the environment, despite a lack of visual input. But this process takes time and practice. The associated changes in the brain are facilitated by synaptic plasticity, a process that enables experience-dependent adaptation, learning and memory. One clue as to whether reorganizational adaptation is taking place in the brain is obtained by analysing the density and distribution of neurotransmitters that are crucial for synaptic plasticity.

Adaptation requires major effort from the brain

The researchers from Bochum studied what happens in the brain after loss of vision in mice. They examined the density of neurotransmitter receptors after the emergence of blindness and compared the results with the brains of healthy mice. In addition, they tested how well the blind mice performed in spatial recognition tests, in order to examine the animals’ memory.

Before any changes had developed in the sensory cortices, the researchers observed that loss of vision was first followed by changes in the density of neurotransmitter receptors and impairments of synaptic plasticity in the hippocampus. In subsequent months, hippocampal plasticity became more impaired and spatial memory was affected. During this time the density of neurotransmitter receptors also changed in the visual cortex, as well as in other cortical areas that process other sensory information.

“After blindness occurs, the brain tries to compensate for the loss by ramping up its sensitivity to the missing visual signals,” explains Denise Manahan-Vaughan, who led the study. When this fails to work, the other sensory modalities begin to adapt and increase their acuities. “Our study shows that this process of reorganisation is supported by extensive changes in the expression and function of key neurotransmitter receptors in the brain. This is a major undertaking, during which time the hippocampus’ ability to store spatial experiences is hampered,” says Manahan-Vaughan.

###

Media Contact
Denise Manahan-Vaughan
[email protected]
49-234-322-2042

Related Journal Article

https://news.rub.de/english/press-releases/2018-12-19-neuroscience-how-brain-reacts-loss-vision
http://dx.doi.org/10.1093/cercor/bhy297

Tags: BiologyMedicine/Healthneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Decoding Animal Decision-Making: NIH Funds Groundbreaking Research on Exploration vs. Exploitation

Decoding Animal Decision-Making: NIH Funds Groundbreaking Research on Exploration vs. Exploitation

September 9, 2025
Nitrogen Supplementation: Impact on Cattle Nutrition and Metabolism

Nitrogen Supplementation: Impact on Cattle Nutrition and Metabolism

September 9, 2025

Taenia Pisiformis Infection Alters Pregnant Rabbits’ Immune Response

September 9, 2025

Tracing the Origins of Wnt Signaling Uncovers a Protein Superfamily Spanning the Tree of Life

September 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    51 shares
    Share 20 Tweet 13
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Sociodemographics Affect Quality of Life Post-Prostatectomy

RSV Can Severely Impact Even Healthy Children, New Research Shows

Keto Diet May Alleviate Depression Symptoms Among College Students, Study Finds

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.