• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, December 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

How spin dances with dipole

Bioengineer by Bioengineer
March 21, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ©Science China Press

Both electric dipoles and spin moments can be ordered in solids, leading to ferro-type phases, e.g. ferromagnetism or ferroelectricity. Generally these two degrees of freedom are not simultaneously active in solids. Multiferroics, are those materials with orders of both spin moments and electric dipoles, which provide an ideal platform for these two vectors to twist together.

Even though, the coupling between magnetism and ferroelectricity is nontrivial since they obey different physical rules. From the symmetric aspect, an electric dipole breaks the spatial inversion symmetry while a spin moment breaks the time reversal symmetry. Microscopically, the existing of net magnetization requires unpaired spin, while the formation of dipole usually needs empty orbitals. Then how can they dance together?

Thanks to the extensive studies in the past decades, now scientists know how to active both degrees of freedom in solids and link them together. In a recent Topical Review by Dong, Xiang, and Dagotto, published in Natl. Sci. Rev., the authors summarize various mechanisms to coupling magnetism and ferroelectricity, which can be categorized to three paths: spin-orbit coupling, spin-lattice coupling, spin-charge coupling. These physical mechanisms have been explained with examples of typical materials.

###

This research received funding from the National Natural Science Foundation of China, Special Funds for Major State Basic Research, the Qing Nian Ba Jian Program, the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division.

See the article:

Shuai Dong, Hongjun Xiang and Elbio Dagotto.

Magnetoelectricity in multiferroics: a theoretical perspective

Natl Sci Rev 2018; doi: 10.1093/nsr/nwz023

https://doi.org/10.1093/nsr/nwz023

The National Science Review is the first comprehensive scholarly journal released in English in China that is aimed at linking the country’s rapidly advancing community of scientists with the global frontiers of science and technology. The journal also aims to shine a worldwide spotlight on scientific research advances across China.

Media Contact
Bei Yan
[email protected]

Related Journal Article

http://dx.doi.org/10.1093/nsr/nwz023

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

December 11, 2025
Photoswitchable Olefins Enable Controlled Polymerization

Photoswitchable Olefins Enable Controlled Polymerization

December 11, 2025

Cation Hydration Entropy Controls Chloride Ion Diffusion

December 10, 2025

Iridium Catalysis Enables Piperidine Synthesis from Pyridines

December 3, 2025
Please login to join discussion

POPULAR NEWS

  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    122 shares
    Share 49 Tweet 31
  • Nurses’ Views on Online Learning: Effects on Performance

    69 shares
    Share 28 Tweet 17
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    71 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

GFAT’s Role in Disease Pathology: A Review

Targeting LRBA Boosts CTLA4, Enhances Cancer Immunity

Assessing Research Capacity in Allied Health Workforce

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.