• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

How sperm unpack dad’s genome so it can merge with mom’s

Bioengineer by Bioengineer
March 13, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

UC San Diego researchers discover the enzyme SPRK1’s role in reorganizing the paternal genome during the first moments of fertilization — a finding that might help explain infertility cases of unknown cause

IMAGE

Credit: Lan-Tao Gou


A sperm enters an egg, an embryo develops and eventually a baby is born. But back up a second — how does the mother’s half-genome actually merge with the father’s half-genome to form one new human genome? Turns out researchers don’t really know that much about these relatively brief, yet crucial, incipient moments in fertilization.

Researchers at University of California San Diego School of Medicine have discovered that the enzyme SPRK1 leads the first step in untangling a sperm’s genome, kicking out special packing proteins, which opens up the paternal DNA and allows for major reorganization — all in a matter of hours.

The study published March 12, 2020 in Cell.

“In this study, we were simply interested in answering a fundamental question about the beginning of life,” said senior author Xiang-Dong Fu, PhD, Distinguished Professor in the Department of Cellular and Molecular Medicine at UC San Diego School of Medicine. “But in the process we’ve uncovered a step that might malfunction for some people, and contribute to a couple’s difficulty conceiving. Now that we know SPRK1 plays a role here, its potential part in infertility can be further explored.”

Sperm can be up to 20 times smaller than a normal cell in the body. And while sperm carry only half as much genetic material as a regular cell, it needs to be folded and packaged in a special way in order to fit. One way nature does this is by replacing histones — proteins around which DNA is wound, like beads on a necklace — with a different type of protein called protamines.

Fu’s team has long studied SPRK1 for a completely different reason: its ability to splice RNA, an important step that enables the translation of genes to proteins. They previously showed that SPRK1 is over-activated in colon cancer, and they developed inhibitors to dampen the enzyme.

But back in 1999, shortly after Fu published a paper that first described the enzyme’s role in RNA splicing, a research group in Greece noted similarities in the sequence of amino acid building blocks that make up SPRK1 substrates (the proteins upon which the enzyme acts) and protamine. Fu thought about it for years, but didn’t have the expertise and tools to study sperm development. In 2015, Lan-Tao Gou, PhD, was interviewing for a position as postdoctoral researcher when Fu realized that with Gou’s experience in spermatogenesis, he finally had the right person for the job.

“I said to Lan-Tao, let’s do something nobody else is doing. I have a theory and you have the expertise,” Fu said. “So we borrowed the equipment we needed and leveraged the core facilities we have here at UC San Diego.

“And, surprisingly, everything we tried supported our hypothesis — SRPK1 leads a double life, swapping protamines for histones once sperm meets egg.”

According to Fu, SPRK1 most likely started out playing this role in early embryogenesis, then later evolved the ability to splice RNA. In this way, SPRK1 gets to stick around even when it’s no longer needed for embryogenesis.

Fu, Gou and team next want to determine the signals that instruct sperm to synchronize with the maternal genome.

“We have a ton of new ideas now,” Fu said. “And the better we understand every step in the process of spermatogenesis, fertilization and embryogenesis, the more likely we are to be able to intervene when systems malfunction for couples struggling with reproductive issues.”

###

Additional study co-authors include: Do-Hwan Lim, Wubin Ma, Brandon E. Aubol, Yajing Hao, Jun Zhao, Zhengyu Liang, Changwei Shao, Xuan Zhang, Fan Meng, Hairi Li, Michael G. Rosenfeld, Pamela L. Mellon, Joseph A. Adams, UC San Diego; Xin Wang, Xiaorong Zhang, Ruiming Xu, Dangsheng Li, and Mo-Fang Liu, Chinese Academy of Sciences.

Media Contact
Heather Buschman, PhD
[email protected]
858-249-0456

Related Journal Article

http://dx.doi.org/10.1016/j.cell.2020.02.020

Tags: Cell BiologyDevelopmental/Reproductive BiologyFertilityMedicine/HealthMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Early Puberty Rates in Chinese Children Explored

November 29, 2025

Translating Clinical Guidelines into Primary Care Practice

November 29, 2025

Real-World Insights on Bladder Cancer Treatment in Italy

November 29, 2025

Unraveling KaiXinSan’s Mechanism for Insomnia Treatment

November 29, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    120 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    105 shares
    Share 42 Tweet 26
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Study Reveals Cyclone Air Curtain Controls Coal Dust

Early Puberty Rates in Chinese Children Explored

Translating Clinical Guidelines into Primary Care Practice

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.