• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, December 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

How power-to-gas technology can be green and profitable

Bioengineer by Bioengineer
February 26, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Economists map out economically viable path to renewables-based hydrogen production

Hydrogen production based on wind power can already be commercially viable today. Until now, it was generally assumed that this environmentally friendly power-to-gas technology could not be implemented profitably. Economists at the Technical University of Munich (TUM), the University of Mannheim and Stanford University have now described, based on the market situations in Germany and Texas, how flexible production facilities could make this technology a key component in the transition of the energy system.

From fertilizer production, as a coolant for power stations or in fuel cells for cars: Hydrogen is a highly versatile gas. Today, most hydrogen for industrial applications is produced using fossil fuels, above all with natural gas and coal. In an environmentally friendly energy system, however, hydrogen could play a different role: as an important storage medium and a means of balancing power distribution networks: excess wind and solar energy can be used to produce hydrogen through water electrolysis. This process is known as power-to-gas. The hydrogen can recover the energy later, for example by generating power and heat in fuel cells, blending hydrogen into the natural gas pipeline network or converted into synthesis gas.

“Should I sell the energy or convert it?”

However, power-to-gas technology has always been seen as non-competitive. Gunther Glenk of the Chair of Management Accounting at TUM and Prof. Stefan Reichelstein, a researcher at the University of Mannheim and Stanford University, have now completed an analysis demonstrating the feasibility of zero-emission and profitable hydrogen production. Their study, published in the renowned journal Nature Energy, shows that one factor is essential in the current market environments in Germany and Texas:

The concept requires facilities that can be used both to feed power into the grid and to produce hydrogen. These combined systems, which are not yet in common use, must respond optimally to the wide fluctuations in wind power output and prices in power markets. “The operator can decide at any time: should I sell the energy or convert it,” explains Stefan Reichelstein.

Production in some industries would already be profitable today

In Germany and Texas, up to certain production output levels, such facilities could already produce hydrogen at costs competitive with facilities using fossil fuels. In Germany, however, the price granted by the government would have to be paid for the generation of electric power instead for feeding it into the grid.

“For medium and small-scale production, these facilities would already be profitable now,” says Reichelstein. Production on that scale is appropriate for the metal and electronics industries, for example – or for powering a fleet of forklift trucks on a factory site. The economists predict that the process will also be competitive in large-scale production by 2030, for example for refineries, ammonia production, assuming that wind power and electrolyte costs maintain the downward trajectory seen in recent years. “The use in fuel cells for trucks and ships is also conceivable”, says Glenk.

Energy sources for intelligent infrastructure

The economists’ model offers a planning blueprint for industry and energy policy. It can take into account many other factors, such as charges for carbon emissions, and calculate optimal sizing of the two sub-systems. It is also applicable to other countries and regions.

“Power-to-gas offers new business models for companies in various industries,” says Glenk. “Power utilities can become hydrogen suppliers for industry. Manufacturers, meanwhile, can get involved in the decentralized power generation business with their own combined facilities. In that way, we can develop a climate-friendly and intelligent infrastructure that optimally links power generation, production and transport.”

###

Publication:
G. Glenk, S. Reichelstein: Economics of converting renewable power to hydrogen. Nature Energy, 2019. DOI: 10.1038/s41560-019-0326-1

More information:
Gunther Glenk conducts research at the Center for Energy Markets of the TUM School of Management. The study was supported by the Hanns-Seidel-Stiftung with funding from the Federal Ministry of Education and Research.

Contact: Gunther Glenk, M.Sc.

Technical University of Munich (TUM)

Chair of Management Accounting

Tel: +49 89 289 22798 (Press Office)

[email protected]

Media Contact
Gunther Glenk
[email protected]

Related Journal Article

https://www.tum.de/nc/en/about-tum/news/press-releases/detail/article/35259/
http://dx.doi.org/10.1038/s41560-019-0326-1

Tags: Business/EconomicsClimate Change
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Fish Parasite Reveals Gender-Specific Energetic Stress and Growth

December 16, 2025
Unveiling Fibroblast Signatures in Oral Cancer

Unveiling Fibroblast Signatures in Oral Cancer

December 16, 2025

S-Methylcysteine Shields Rats from Toxoplasma Reproductive Harm

December 16, 2025

Why Accurate O₂•⁻ Notation Matters in Plants

December 16, 2025
Please login to join discussion

POPULAR NEWS

  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    122 shares
    Share 49 Tweet 31
  • Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    72 shares
    Share 29 Tweet 18

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Optimizing Portfolio Topology: From Data to Decisions

Fish Parasite Reveals Gender-Specific Energetic Stress and Growth

Metabolic Syndrome Fuels Endometrial Cancer via Oleic Acid

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.