• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, June 4, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

How plants use sugar to produce roots

Bioengineer by Bioengineer
May 22, 2023
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Along with sugar reallocation, a basic molecular mechanism within plants controls the formation of new lateral roots. An international team of plant biologists has demonstrated that it is based on the activity of a certain factor, the target of rapamycin (TOR) protein. A better understanding of the processes that regulate root branching at the molecular level could contribute to improving plant growth and therefore crop yields, according to research team leader Prof. Dr Alexis Maizel of the Centre for Organismal Studies at Heidelberg University.

Lateral root primordia Arabidopsis thaliana

Credit: Michael Stitz, Heidelberg University

Along with sugar reallocation, a basic molecular mechanism within plants controls the formation of new lateral roots. An international team of plant biologists has demonstrated that it is based on the activity of a certain factor, the target of rapamycin (TOR) protein. A better understanding of the processes that regulate root branching at the molecular level could contribute to improving plant growth and therefore crop yields, according to research team leader Prof. Dr Alexis Maizel of the Centre for Organismal Studies at Heidelberg University.

Good root growth ensures that plants can absorb sufficient nutrients and grow, thus contributing to their general fitness. To do that, they must align the available resources from metabolic processes with their genetic development programmes. Plants bind carbon dioxide (CO2) from the atmosphere in their leaves and convert it to simple sugars via photosynthesis. In the form of fructose and glucose, these simple sugars are also allocated in the roots, where they drive the growth and development of the plant.

Prof. Maizel’s team used the thale cress Arabidopsis thaliana, a model plant in plant research, to study how this process occurs at the molecular level. Their investigations focus on what role glucose plays in forming lateral roots. “We do know that, besides plant hormones, sugar from the shoot is also allocated in the roots, but how the plant recognises that sugar resources are available for forming lateral roots has not been understood thus far,” explains Dr Michael Stitz, a researcher on Alexis Maizel’s team.

The studies at the metabolism level showed that Arabidopsis forms lateral roots only when glucose breaks down and carbohydrates are consumed in the pericycle – the outermost cell layer of the main root cylinder. This process is controlled at the molecular level by the target of rapamycin protein. This factor controls critical signal networks and metabolic processes in plants as well as in animals and humans. Its activity is governed by the interaction of growth factors like the plant hormone auxin and nutrients like sugar.

Using Arabidopsis, the researchers discovered that TOR becomes active in the pericycle cells only when sugar is present there. So-called founder cells then form the lateral roots through cell division. Prof. Maizel: “TOR assumes a kind of gatekeeper role; when the plant activates the genetic growth programme responsible for root formation via the hormone auxin, TOR checks whether there are sufficient sugar resources available for this process.” TOR acts by controlling the translation of specific auxin-dependent genes, blocking their expression if there aren’t sufficient sugar resources available. When the researchers suppressed TOR activity, no lateral roots were formed. “That suggests that a fundamental molecular mechanism is involved,” states the Heidelberg plant biologist.

At the same time, the researchers demonstrated that TOR controls, via a similar mechanism, the formation of roots from other plant tissues – the so-called adventitious roots. According to Prof. Maizel, the results from their investigations could also be of interest for agricultural applications. “They could potentially be used to develop new strategies for plant growth optimised for various environmental conditions and better crop yields,” emphasises the researcher.

The research was funded by the German Research Foundation. In addition to the plant biologists from the Centre for Organismal Studies of Heidelberg University, researchers from the University of Strasbourg (France), the Max Planck Institute of Molecular Plant Physiology in Potsdam, the Centre for Research in Agricultural Genomics in Barcelona (Spain), and University College Cork (Ireland) also contributed. The results of their research were published in The EMBO Journal.



Journal

The EMBO Journal

DOI

10.15252/embj.2022111273

Article Title

TOR acts as a metabolic gatekeeper for auxin-dependent lateral root initiation in Arabidopsis thaliana

Article Publication Date

6-Apr-2023

Share12Tweet7Share2ShareShareShare1

Related Posts

Racial and ethnic diversity in research

Scientific publishers and funding agencies unite in favor of racial and ethnic diversity in research

June 2, 2023
STAR Time Projection CHamber

Subtle signs of fluctuations in critical point search

June 2, 2023

UVA-led discovery challenges 30-year-old dogma in associative polymers research

June 2, 2023

Cancer cells rev up synthesis, compared with neighbors

June 1, 2023

POPULAR NEWS

  • plants

    Plants remove cancer causing toxins from air

    40 shares
    Share 16 Tweet 10
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    36 shares
    Share 14 Tweet 9
  • Deep sea surveys detect over five thousand new species in future mining hotspot

    35 shares
    Share 14 Tweet 9
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phase 3 SWOG Cancer Research Network trial, led by a City of Hope researcher, demonstrates one-year progression-free survival in 94% of patients with Stage 3 or 4 classic Hodgkin lymphoma who received a checkpoint inhibitor combined with chemotherapy

The promise of novel FolRα-targeting antibody drug conjugate in recurrent epithelial ovarian cancer

Carbon-based stimuli-responsive nanomaterials: classification and application

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 50 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In