• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, February 2, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

How plants protect themselves from oxidative stress during iron uptake – and why this is also important for humans

Bioengineer by Bioengineer
December 12, 2022
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Iron is a critical micronutrient for the survival of plants and humans, yet too much iron can also be toxic. An interdisciplinary research team from Heinrich Heine University Düsseldorf (HHU) has discovered that the protein PATELLIN2 is not only involved in regulating iron levels in plants. PATELLIN2 is one of a group of proteins that are also involved in the transport of vitamin E in humans. The researchers are now presenting the results, which are also important for supplying people with iron via plant foods, in the journal Plant Physiology.

Proposed working model

Credit: HHU/Jannik Hornbergs

Iron is a critical micronutrient for the survival of plants and humans, yet too much iron can also be toxic. An interdisciplinary research team from Heinrich Heine University Düsseldorf (HHU) has discovered that the protein PATELLIN2 is not only involved in regulating iron levels in plants. PATELLIN2 is one of a group of proteins that are also involved in the transport of vitamin E in humans. The researchers are now presenting the results, which are also important for supplying people with iron via plant foods, in the journal Plant Physiology.

Iron is an essential micronutrient for humans. Iron and zinc deficiencies in a person’s diet cause severe damage to health, above all in unborn and young children. To secure world food supplies and fight malnutrition, particularly in the poorest countries, it is therefore necessary to ensure the supply of iron primarily from plant sources and improve it through targeted breeding.

Plants need iron for fundamental metabolic reactions such as their photosynthesis and respiration. However, iron is a double-edged sword for them: Unfavourable environmental conditions such as drought can put plants under stress, which is exacerbated by the presence of reactive metal ions – including iron. Being rooted, plants obviously cannot move away from local stress conditions, so land plants have needed to evolve other ways to deal with stress factors.

These include iron regulation. For research and application it is important to understand how plants manage their nutrition with micronutrients during their growth with the potentially risky consequences of oxidative stress. If we know these processes, we can influence them in a targeted way to improve plant productivity and food quality, in particular in light of climate change – which increases the chances of drought.

A team comprising representatives from biology, chemistry and medicine at HHU, headed by Professor Dr Petra Bauer and Dr Rumen Ivanov from the Chair of Botany, has examined iron uptake mechanisms in plants using Arabidopsis thaliana (thale cress) as a model plant. The iron-regulated transporter IRT1 plays an important role in iron uptake in plant roots.

Root cells control the activity of IRT1, enabling plants to limit the toxicity and oxidative stress caused by metal ions. The HHU researchers were able to show that IRT1 binds the so-called SEC14 domain lipid transfer protein PATELLIN2. This in turn changes the protein environment of IRT1 depending on iron supply.

Another lipid transfer protein with an SEC14 domain plays a key role in vitamin E homoeostasis in humans and the transport of vitamin E from the intestine through the liver to the various organs in the body. The body obtains vitamin E from plant foods, primarily leaves and seeds.

PATELLIN2 can bind the molecule alpha-tocopherol, one of the most important vitamin E compounds in leaves and roots. Jannik Hornbergs, who conducted the studies during his PhD at HHU in cooperation with Dr Karolin Montag, says: “We have established that the SEC14 lipid transfer protein PATELLIN2 and tocopherols are critical for iron mobilisation in the root and antioxidative activities as a reaction to iron.”

The link between iron transport and SEC14 lipid transfer protein enables new working models for how cells can use vitamin E to control the extent of oxidative stress caused by iron. Dr Rumen Ivanov and Professor Bauer on the importance of the results: “Ultimately, these links that we now know can be used to identify new breeding targets for crop plants that can achieve stress resistance and maximise iron content in the plants.”

The research programme was conducted within the framework of the Collaborative Research Centre (CRC) 1208 “Identity and dynamics of membrane systems – from molecules to cellular functions”, which is based at HHU. In addition to the team headed by Professor Bauer, the working groups headed by Professor Dr Kai Stühler (Molecular Proteomics Laboratory), Professor Dr Birgit Strodel (Computational Biochemistry Group), Professor Dr Laura Hartmann (Chair of Macromolecular Chemistry) and Professor Dr Jürgen Zeier (Molecular Ecophysiology of Plants) were also involved.

Original publication

Jannik Hornbergs, Karolin Montag, Jennifer Loschwitz, Inga Mohr, Gereon Poschmann, Anika Schnake, Regina Gratz, Tzvetina Brumbarova, Monique Eutebach, Kalina Angrand, Claudia Fink-Straube, Kai Stühler, Jürgen Zeier, Laura Hartmann, Birgit Strodel, Rumen Ivanov, Petra Bauer: SEC14-GOLD protein PATELLIN2 binds IRON-REGULATED TRANSPORTER1 linking root iron uptake to vitamin E, Plant Physiology, kiac563 (2022).

DOI: 10.1093/plphys/kiac563



Journal

PLANT PHYSIOLOGY

DOI

10.1093/plphys/kiac563

Article Title

SEC14-GOLD protein PATELLIN2 binds IRON-REGULATED TRANSPORTER1 linking root iron uptake to vitamin E

Article Publication Date

9-Dec-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

University of Houston researchers Chandra Mohan and Richard Willson

Early diagnosis and monitoring of lupus nephritis – on your smartphone

February 1, 2023
Assistant Professor Jo Philips

Uncovering the secrets of electron-eating microorganisms

February 1, 2023

Anna Lee appointed AIP Foundation Executive Director

February 1, 2023

First solid scientific evidence that Vikings brought animals to Britain

February 1, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    65 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tuberculosis vaccine does not protect elderly against COVID-19

Flue2Chem: Science-based industries join forces for first time to address UK net zero targets

What’s that sound? Automobile horn changed history and communications technology

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 42 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In