• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

How our cells build different antennae to sense the world around us

Bioengineer by Bioengineer
July 16, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Swadhin C. Jana

Our body is made up of millions of cells that communicate with each other and with the environment using tiny antennae, called cilia, that emit and receive signals, including sound, smell and light. Some of these antennae can also move, and are altered in several diseases leading to infertility, loss of vision, obesity, among other symptoms. Interestingly, some patients may show all of these symptoms, while others may have only one type of defect. Having such different functions, a lingering mystery in science has been how cells can make antennae with such different functions. Do they use the same "bricks", "cement", "wood" in their construction? A team from the Gulbenkian Institute of Science has now discovered that the foundation of these antennae is diverse, contributing to the assembly of antennae with such different functions. This study, now published in Nature Cell Biology * – a leading journal in the field, will help physicians better understand diseases that involve antennae, called ciliopathies.

Researchers have found that while cells use many of the same building materials as they lay the foundations for their antennae, they are very creative, using them in different proportions and at different sites, at different stages of construction, thus creating the structurally different functions. "An interesting consequence of our finding is that it can explain a mystery related to genetic diseases associated with cilia. These diseases usually affect only some antennae, not all. You can be blind without being infertile. You can be infertile without being obese. Our observation that many components important to the construction of cilia foundations are present in different proportions and different moments in space and time, only in some tissues and not in others, explains how their mutations, which occur in genetic diseases, will only show some of the symptoms, solving the mystery" said Mónica Bettencourt-Dias, study coordinator.

The Gulbenkian Science Institute researchers used highly advanced imaging techniques such as electronic tomography and super-resolution microscopy to view antennas that are 100 times smaller than the tip of one of our hairs, thus revealing their diversity in structure and components. "As all the foundations of the cilia begin with a similar structure, we were surprised to see that they eventually become so diverse in different cells within an organism!" said Swadhin C. Jana, the investigator who took the lead for this study. To investigate this problem, Swadhin moved from Kolkata, India, to the Gulbenkian Institute of Science in Portugal.

###

This study was funded by the European Research Council (ERC), the European Molecular Biology Organization (EMBO), the Foundation for Science and Technology (FCT, Portugal) and the Gulbenkian Institute of Science. It had the collaboration of several scientists, including Helder Maiato of i3S.

* Jana SC, Mendonça SO, Machado P, Rocha J, Werner S, A Pereira, Maiato H, Bettencourt-Dias M. Differential Regulation of Transition Zone and Centriole Proteins Contributes to Ciliary Base Diversity. Nature Cell Biology. http://dx.doi.org/10.1038/s41556-018-0132-1

Media Contact

Ana Mena
[email protected]
351-214-407-959
@IGCiencia

http://www.igc.gulbenkian.pt

Related Journal Article

http://dx.doi.org/10.1038/s41556-018-0132-1

Share12Tweet8Share2ShareShareShare2

Related Posts

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

AI-Enhanced Optical Coherence Photoacoustic Microscopy Revolutionizes 3D Cancer Model Imaging

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.