• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

How our cells build different antennae to sense the world around us

Bioengineer by Bioengineer
July 16, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Swadhin C. Jana

Our body is made up of millions of cells that communicate with each other and with the environment using tiny antennae, called cilia, that emit and receive signals, including sound, smell and light. Some of these antennae can also move, and are altered in several diseases leading to infertility, loss of vision, obesity, among other symptoms. Interestingly, some patients may show all of these symptoms, while others may have only one type of defect. Having such different functions, a lingering mystery in science has been how cells can make antennae with such different functions. Do they use the same "bricks", "cement", "wood" in their construction? A team from the Gulbenkian Institute of Science has now discovered that the foundation of these antennae is diverse, contributing to the assembly of antennae with such different functions. This study, now published in Nature Cell Biology * – a leading journal in the field, will help physicians better understand diseases that involve antennae, called ciliopathies.

Researchers have found that while cells use many of the same building materials as they lay the foundations for their antennae, they are very creative, using them in different proportions and at different sites, at different stages of construction, thus creating the structurally different functions. "An interesting consequence of our finding is that it can explain a mystery related to genetic diseases associated with cilia. These diseases usually affect only some antennae, not all. You can be blind without being infertile. You can be infertile without being obese. Our observation that many components important to the construction of cilia foundations are present in different proportions and different moments in space and time, only in some tissues and not in others, explains how their mutations, which occur in genetic diseases, will only show some of the symptoms, solving the mystery" said Mónica Bettencourt-Dias, study coordinator.

The Gulbenkian Science Institute researchers used highly advanced imaging techniques such as electronic tomography and super-resolution microscopy to view antennas that are 100 times smaller than the tip of one of our hairs, thus revealing their diversity in structure and components. "As all the foundations of the cilia begin with a similar structure, we were surprised to see that they eventually become so diverse in different cells within an organism!" said Swadhin C. Jana, the investigator who took the lead for this study. To investigate this problem, Swadhin moved from Kolkata, India, to the Gulbenkian Institute of Science in Portugal.

###

This study was funded by the European Research Council (ERC), the European Molecular Biology Organization (EMBO), the Foundation for Science and Technology (FCT, Portugal) and the Gulbenkian Institute of Science. It had the collaboration of several scientists, including Helder Maiato of i3S.

* Jana SC, Mendonça SO, Machado P, Rocha J, Werner S, A Pereira, Maiato H, Bettencourt-Dias M. Differential Regulation of Transition Zone and Centriole Proteins Contributes to Ciliary Base Diversity. Nature Cell Biology. http://dx.doi.org/10.1038/s41556-018-0132-1

Media Contact

Ana Mena
[email protected]
351-214-407-959
@IGCiencia

http://www.igc.gulbenkian.pt

Related Journal Article

http://dx.doi.org/10.1038/s41556-018-0132-1

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Genetic Variants Impact Milk and Reproduction in Buffalo

October 13, 2025
HSPB1 Alters Obesity Metabolism Differently by Sex

HSPB1 Alters Obesity Metabolism Differently by Sex

October 13, 2025

Unraveling the Mysteries of ‘Chemo Brain’

October 13, 2025

IL1B Gene Variants Linked to Schizophrenia in Iranians

October 13, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1231 shares
    Share 492 Tweet 307
  • New Study Reveals the Science Behind Exercise and Weight Loss

    104 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Illinois Chat: A New Communication Platform Unveiled for Campus Community

Unraveling Fear of Cancer Recurrence in Colorectal Patients

Comparing Mass Spectrometry and Immunohistochemistry in Amyloid Subtyping

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.