• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, July 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

How new data can make ecological forecasts as good as weather forecasts

Bioengineer by Bioengineer
March 9, 2020
in Biology
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Illustration by E. Paul Oberlander, with permission from the Woods Hole Oceanographic Institution


MADISON, Wis. — When El Nino approaches, driven by warm Pacific Ocean waters, we’ve come to expect both drenching seasonal rains in the southern U.S. and drought in the Amazon. Those opposite extremes have huge effects on society and are increasingly predictable thanks to decades of weather data.

Soon, University of Wisconsin-Madison ecologist Ben Zuckerberg thinks we’ll be able to pull off the same forecasting feat for bird migrations and wildlife populations. That’s because just as those recurring changes in climate have predictable consequences for humans, they also have predictable effects on plants and animals.

For instance, ecological predictions could help us prepare for diseases in crops or population crashes in endangered species. Good forecasting could tell us where conservation measures are needed most in the coming year or decade.

With a team of scientists, Zuckerberg published a paper March 5 in the journal Trends in Ecology and Evolution describing how species and ecosystems respond to the opposite extremes of climate across continents, induced by patterns such as El Nino. The team coined a name for these large-scale, opposing ecological outcomes, such as famine on one continent and a feast on another, dubbing them “ecological dipoles.”

“Plant and animal populations respond to climate at continental scales,” says Zuckerberg, who is leading an interdisciplinary team looking to unearth evidence of this global climate-ecology link. “Going forward, we want to know how do we observe this connection? How do we measure it? How do we track how these dynamics are changing?”

He and his team believe that a recent revolution in ecological data makes this possible. With the rise of citizen science, hundreds of thousands of global volunteers have been collecting quality data about the world around them. And the National Science Foundation has begun setting up ecological stations nationwide that mirror the ubiquitous weather stations we rely on for constant data collection.

“We are beginning that revolution right now in ecology where we are able to collect data at a scale that matches what climatologists have been able to use,” says Zuckerberg. “Having data that’s been collected over continental scales, in real time, and that spans decades is really what you need to analyze the regularity and changes in both climate and ecological dipoles.”

The idea that climate affects ecosystems across big expanses is not entirely new. It’s been clear for decades that plant and animal behavior can be synchronized across a region. One classic example is acorn production. In certain years, all the oak trees in an area will produce huge amounts of acorns, which in turn leads to population booms in squirrels and other animals. Most likely, climate helps organize this collective response. Better data will make it easier to spot these kinds of patterns across the globe.

Understanding this climate-ecology connection is more urgent than ever as Earth rapidly warms and its climate changes, says Zuckerberg. It’s not clear how climate change will affect patterns like El Nino or the plants and animals that respond to those patterns. Getting a handle on how predictable climate extremes affect ecosystems will help researchers respond to changes as they arise.

Now with their theory laid out, Zuckerberg’s team is beginning the first project to formally test the ecological dipole idea. They will use citizen science data to track deviations in normal bird migrations and the boom-and-bust cycle of seed production to try to identify a link back to climate across the entire continent.

For Zuckerberg, the fun comes from wrapping his head around this modern-day butterfly effect.

“Shifts in the climate system that can influence these ecological processes originate halfway across the world,” he says. “And I love thinking about how these connections are going to change over time. It’s really fascinating.”

###

This work was supported by the National Science Foundation Macrosystems Biology and NEON-enabled Science projects 1926428, 1926341, and 1926221 and DEB EAGER project 1745496.

–Eric Hamilton, (608) 263-1986, [email protected]

READ ONLINE: https://news.wisc.edu/how-new-data-can-make-ecological-forecasts-as-good-as-weather-forecasts/

DOWNLOAD IMAGES: https://uwmadison.box.com/v/ecological-forecasts

Media Contact
Ben Zuckerberg
[email protected]
608-262-8879

Original Source

https://news.wisc.edu/how-new-data-can-make-ecological-forecasts-as-good-as-weather-forecasts/

Related Journal Article

http://dx.doi.org/10.1016/j.tree.2020.01.010

Tags: Atmospheric ScienceBiologyClimate ChangeClimate ScienceEarth ScienceEcology/EnvironmentForestryOceanographyTemperature-Dependent PhenomenaWeather/Storms
Share12Tweet8Share2ShareShareShare2

Related Posts

Engineering Receptors to Enhance Flagellin Detection

Engineering Receptors to Enhance Flagellin Detection

July 28, 2025
Decoding FLS2 Unveils Broad Pathogen Detection Principles

Decoding FLS2 Unveils Broad Pathogen Detection Principles

July 28, 2025

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

July 26, 2025

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

July 26, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    53 shares
    Share 21 Tweet 13
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Engineering Receptors to Enhance Flagellin Detection

Hydrogels in Food: Advances, Challenges, and Insights

Agomelatine Restores Mitochondria, Rescues Oocyte Meiosis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.